Skip to main content

A Scalable Spatial Anisotropic Interpolation Approach for Object Removal from Images Using Elastic Net Regularization

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10053))

Abstract

Object removal from an image is a novel problem with a lot of applications, in the area of computer vision. The ill-posed nature of the problem and the non-stationary content present in the image render it a complicated task. The diffusion-based and self-similarity based algorithms available in the literature explicitly model either the structures or the textures but not the both. They are good at solving small instances of the problem. However, they tend to produce low fidelity results and turn out to be intractable if the relative size of the object to the input image increases. The moving average based Spatial Anisotropic Interpolation (SAI) for text removal, proposed in our previous work also failed due to its poor extrapolation capability. Thus, it is imperative to develop a sampling scheme which can retain the interpolation feature while showing an apposite concern to the non-stationary features present in the image. The proposed, Design of Computer Experiments (DACE) driven Scalable SAI (SSAI) is a natural extension of SAI in three aspects. Precisely, it extends the Systematic Sampling to ‘Not only Symmetric Hierarchical Sampling’ (NoSHS), intelligently selects a basis based on Hurst Exponent, and employs Elastic Net regularization of Gaussian regression error for determining the order of the polynomial. Hence, these adaptive features increase the fidelity of the results. This paper elaborates the proposed framework- SSAI and demonstrates its capabilities by comparing the results with the latest hybrid approaches using the PSNR metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bugeau, A., Bertalmio, M., Caselles, V., Sapiro, G.: A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19(10), 2634–2645 (2010)

    Article  MathSciNet  Google Scholar 

  2. Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Signal Process. Mag. 31, 127–144 (2014)

    Article  Google Scholar 

  3. Buyssens, P., David, T., Olivier, L.: Exemplar-based inpainting: technical review and new heuristics for better geometric reconstructions. Trans. IP 24, 1809–1824 (2015)

    MathSciNet  Google Scholar 

  4. Komodakis, N., Georgios, T.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans. Image Process. 16, 2649–2661 (2007)

    Article  MathSciNet  Google Scholar 

  5. He, K., Sun, J.: Statistics of patch offsets for image completion. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision, ECCV 2012. LNCS, vol. 7573, pp. 16–29. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Elad, M., Starck, J., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19, 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 24:1–24:11 (2009)

    Article  Google Scholar 

  8. Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A variational framework for exemplar-based image inpainting. Int. J. Comput. Vis. 93, 319–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cressie, N.: Statistics for Spatial Data, vol. 416. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  10. Lophaven, N., Nielsen, H.B., Jacob, S.: IMM. Informatics and Mathematical Modeling. Technical University of Denmark, DACE A Matlab Kriging Toolbox (2002)

    Google Scholar 

  11. Gentile, M., Courbin, F., Meylan, G.: Interpolating point spread function anisotropy, aap (2013)

    Google Scholar 

  12. Miller, A.J.: Subset Selection in Regression. Chapman & Hall, Boca Raton (2002)

    Book  MATH  Google Scholar 

  13. Miaohui, W., Bo, Y., King, N.: An efficient framework for image, video inpainting. Signal Process.: Image Commun. 28, 753–762 (2013)

    Google Scholar 

  14. Raghava, M., Agarwal, A., Rao, C.R.: Spatial anisotropic interpolation approach for text removal from an image. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds.) MIWAI 2013. LNCS (LNAI), vol. 8271, pp. 153–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44949-9_15

    Chapter  Google Scholar 

  15. Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., Dhaene, T.: Blind Kriging: implementation and performance analysis. Adv. Eng. Softw. 49, 1–13 (2012)

    Article  Google Scholar 

  16. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Orietta, N., Garutti, C., Vidakovic, B.: 2-D wavelet-based spectra with application in analysis of geophysical images, GIT, February 2006

    Google Scholar 

  18. Carbone, A.: Algorithm to estimate the Hurst exponent of high-dimensional fractals. Phys. Rev. E 76 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raghava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Raghava, M., Agarwal, A., Rao, C.R. (2016). A Scalable Spatial Anisotropic Interpolation Approach for Object Removal from Images Using Elastic Net Regularization. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2016. Lecture Notes in Computer Science(), vol 10053. Springer, Cham. https://doi.org/10.1007/978-3-319-49397-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49397-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49396-1

  • Online ISBN: 978-3-319-49397-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics