Skip to main content

Aquaporins and Root Water Uptake

  • Chapter
  • First Online:
Book cover Plant Aquaporins

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological responses of the tissue. Water travels from the soil to the root xylem through the apoplast (i.e., cell wall space) and/or cell-to-cell, but hydraulic barriers in the apoplast (e.g., suberized structures in the endodermis) can force water to traverse cell membranes at some points along this path. Anytime water crosses a cell membrane, its transport can be affected by the activity of membrane-intrinsic water channel proteins (aquaporins). We review how aquaporins can play an important role in affecting root water transport properties (hydraulic conductivity, Lp), and thus alter water uptake, plant water status, nutrient acquisition, growth, and transpiration. Plants have the capacity to regulate aquaporin activity through a variety of mechanisms (e.g., pH, phosphorylation, internalization, oxidative gating), which may provide a rapid and reversible means of regulating root Lp. Changes in root Lp via the modulation of aquaporin activity is thought to contribute to root responses to a broad range of stresses including drought, salt, nutrient deficiency, and cold. Given their role in contributing to stress tolerance, aquaporins may serve as future targets for improving crop performance in stressful environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiredjo AL, Navaud O, Grieu P, Lamaze T (2014) Hydraulic conductivity and contribution of aquaporins to water uptake in roots of four sunflower genotypes. Bot Stud 55:75. doi:10.1186/s40529-014-0075-1

    Article  Google Scholar 

  • Aharon R, Shahak Y, Wininger S et al (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandersson E, Fraysse L, Sjovall-Larsen S et al (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  • Alsina MM, Smart DR, Bauerle T et al (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Amodeo G, Dorr R, Vallejo A et al (1999) Radial and axial water transport in the sugar beet storage root. J Exp Bot 50:509–516. doi:10.1093/jxb/50.333.509

    Article  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernández-Illescas S et al (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353. doi:10.1104/pp.104.051045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310. doi:10.1093/aob/mcl219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2011) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57. doi:10.1093/jxb/err266

    Article  PubMed  CAS  Google Scholar 

  • Bae E-K, Lee H, Lee J-S, Noh E-W (2011) Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba×P. tremula var. glandulosa). Gene 483:43–48. doi:10.1016/j.gene.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  • Barrios-Masias FH, Jackson LE (2014) California processing tomatoes: morphological, physiological and phenological traits associated with crop improvement during the last 80 years. Eur J Agron 53:45–55

    Article  Google Scholar 

  • Barrios-Masias FH, Knipfer T, McElrone AJ (2015) Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. J Exp Bot 66:erv324. doi:10.1093/jxb/erv324

    Article  CAS  Google Scholar 

  • Barrowclough DE, Peterson CA, Steudle E (2000) Radial hydraulic conductivity along developing onion roots. J Exp Bot 51:547–557. doi:10.1093/jexbot/51.344.547

    Article  CAS  PubMed  Google Scholar 

  • Beaudette PC, Chlup M, Yee J, Emery RJN (2007) Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA. J Exp Bot 58:1291–1300. doi:10.1093/jxb/erl289

    Article  CAS  PubMed  Google Scholar 

  • Besse M, Knipfer T, Miller AJ et al (2011) Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves. J Exp Bot 62:4127–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (2011) Plant breeding for water-limited environments. Springer, New York

    Book  Google Scholar 

  • Boursiac Y, Chen S, Luu D-T et al (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805. doi:10.1104/pp.105.065029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boursiac Y, Boudet J, Postaire O et al (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1971) Resistances to water transport in soybean, bean, and sunflower1. Crop Sci 11:403. doi:10.2135/cropsci1971.0011183X001100030028x

    Article  Google Scholar 

  • Bramley H, Turner NC, Turner DW, Tyerman SD (2009) Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiol 150:348–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldeira CF, Jeanguenin L, Chaumont F, Tardieu F (2014) Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nat Commun 5:5365. doi:10.1038/ncomms6365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal M, Cooke D, Clarkson D (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta. doi:10.1007/BF00195729

    Google Scholar 

  • Carvajal M, Martinez V, Alcaraz CF (1999) Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plant 105:95–101. doi:10.1034/j.1399-3054.1999.105115.x

    Article  CAS  Google Scholar 

  • Cayan DR, Das T, Pierce DW et al (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci U S A 107:21271–21276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618. doi:10.1104/pp.113.233791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174. doi:10.1111/j.1365-313X.2007.03234.x

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70. doi:10.1093/jexbot/51.342.61

    Article  CAS  PubMed  Google Scholar 

  • Comas L, Becker S, Cruz VMV et al (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Gao C, Li Y, et al (2015) The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Sci 234:14–21. doi: 10.1016/j.plantsci.2015.01.016

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlert C, Maurel C, Tardieu F, Simonneau T (2009) Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol 150:1093–1104. doi:10.1104/pp.108.131458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228. doi:10.1105/tpc.017194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiscus EL, Markhart AH (1979) Relationships between root system water transport properties and plant size in Phaseolus. Plant Physiology 64:770–773

    Google Scholar 

  • Frensch J, Steudle E (1989) Axial and radial hydraulic resistance to roots of maize (Zea mays L.). Plant Physiol 91:719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambetta GA, Manuck CM, Drucker ST et al (2012) The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? J Exp Bot 63:6445–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambetta GA, Fei J, Rost TL et al (2013) Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol 163:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, He X, Zhao B et al (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775. doi:10.1093/pcp/pcq036

    Article  CAS  PubMed  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T et al (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71–81

    Article  CAS  PubMed  Google Scholar 

  • Gorska A, Zwieniecka A, Holbrook NM, Zwieniecki MA (2008) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228:989–998. doi:10.1007/s00425-008-0798-x

    Article  CAS  PubMed  Google Scholar 

  • Grondin A, Mauleon R, Vadez V, Henry A (2016) Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant Cell Environ 39:347–365. doi:10.1111/pce.12616

    Article  CAS  PubMed  Google Scholar 

  • Guenther JF, Chanmanivone N, Galetovic MP et al (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachez C, Moshelion M, Zelazny E et al (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62:305–323

    Article  CAS  PubMed  Google Scholar 

  • Hachez C, Veselov D, Ye Q et al (2012) Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ 35:185–198. doi:10.1111/j.1365-3040.2011.02429.x

    Article  CAS  PubMed  Google Scholar 

  • Hachez C, Veljanovski V, Reinhardt H et al (2014) The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell 26:4974–4990. doi:10.1105/tpc.114.134080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985. doi:10.1093/jxb/erp171

    Article  CAS  PubMed  Google Scholar 

  • Henzler T, Steudle E (1995) Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. J Exp Bot 46:199–209

    Article  CAS  Google Scholar 

  • Henzler T, Ye Q, Steudle E (2004) Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ 27:1184–1195

    Article  CAS  Google Scholar 

  • Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta 211:874–882. doi:10.1007/s004250000412

    Article  CAS  PubMed  Google Scholar 

  • Hsiao T (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hukin D, Doering-Saad C, Thomas CR, Pritchard J (2002) Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta 215:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Kim DG, Kim YO et al (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725. doi:10.1023/B:PLAN.0000040900.61345.a6

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Lee SH, Rhee JY et al (2007a) Transgenic arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632. doi:10.1007/s11103-007-9181-8

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Rhee JY, Kim DG et al (2007b) Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. Plant Cell Physiol 48:1331–1339. doi:10.1093/pcp/pcm101

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313. doi:10.1093/aob/mcf199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V et al (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522 http://dx.doi.org/10.1105/tpc.008888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8:1181–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Horie T, Nakahara Y et al (2015) Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress. Plant Cell Physiol 56:875–882. doi:10.1093/pcp/pcv013

    Article  CAS  PubMed  Google Scholar 

  • Katsuhara M, Akiyama Y, Koshio K et al (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43:885–893

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipfer T, Fricke W (2010) Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare L.). New Phytol 187:159–170

    Article  PubMed  Google Scholar 

  • Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to wholeplant water flow in barley (Hordeum vulgare L.). J Exp Bot 62:717–733

    Article  CAS  PubMed  Google Scholar 

  • Knipfer T, Besse M, Verdeil J-L, Fricke W (2011) Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots. J Exp Bot 62:4115–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Kuijken RCP, van Eeuwijk FA, Marcelis LFM, Bouwmeester HJ (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66:5389–5401. doi:10.1093/jxb/erv239

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Zwiazek JJ (2015) Regulation of aquaporin-mediated water transport in Arabidopsis roots exposed to NaCl. Plant Cell Physiol 56:750–758. doi:10.1093/pcp/pcv003

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Singh AP, Chung GC (2004) Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J Exp Bot 55:1733–1741. doi:10.1093/jxb/erh189

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Chung GC, Steudle E (2005) Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd. J Exp Bot 56:985–995. doi:10.1093/jxb/eri092

    Article  CAS  PubMed  Google Scholar 

  • Lian H-L (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489. doi:10.1093/pcp/pch058

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yin L, Deng X, et al (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65:4747–4756. doi: 10.1093/jxb/eru220

  • Lovisolo C, Secchi F, Nardini A et al (2007) Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol Plant 130:543–551

    Article  CAS  Google Scholar 

  • Lovisolo C, Tramontini S, Flexas J, Schubert A (2008) Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environ Exp Bot 63:178–182

    Article  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant Physiol 109:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdieh M, Mostajeran A (2009) Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum. J Plant Physiol 166:1993–2003. doi:10.1016/j.jplph.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Ballesta MC, Aparicio F, Pallás V et al (2003) Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J Plant Physiol 160:689–697

    Article  PubMed  Google Scholar 

  • Martinez-Ballesta MC, Silva C, Lopez-Berenguer C et al (2006) Plant aquaporins: new perspectives on water and nutrient uptake in saline environment. Plant Biol 8:535–546

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Cochard H, Durand J-L (2001a) Hydraulic architecture and water flow in growing grass tillers (Festuca arundinacea Schreb.). Plant Cell Environ 24:65–76. doi:10.1046/j.1365-3040.2001.00657.x

    Article  Google Scholar 

  • Martre P, North GB, Nobel PS (2001b) Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol 126:352–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  CAS  PubMed  Google Scholar 

  • McElrone AJ, Bichler J, Pockman WT et al (2007) Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant Cell Environ 30:1411–1421. doi:10.1111/j.1365-3040.2007.01714.x

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto N, Katsuhara M, Ookawa T et al (2005) Hydraulic conductivity and aquaporins of cortical cells in gravitropically bending roots of Pisum sativum L. Plant Prot Sci 8:515–524. doi:10.1626/pps.8.515

    Article  CAS  Google Scholar 

  • Moshelion M, Becker D, Biela A et al (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshelion M, Halperin O, Wallach R et al (2015) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell Environ 38:1785–1793. doi:10.1111/pce.12410

    Article  CAS  PubMed  Google Scholar 

  • Murai-Hatano M, Kuwagata T, Sakurai J et al (2008) Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant Cell Physiol 49:1294–1305. doi:10.1093/pcp/pcn104

    Article  CAS  PubMed  Google Scholar 

  • Neumann HH, Thurtell GW, Stevenson KR (1974) In situ measurements of leaf water potential and resistance to water flow in corn, soybean, and sunflower at several transpiration rates. Can J Plant Sci 54:175–184. doi:10.4141/cjps74-027

    Article  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  CAS  PubMed  Google Scholar 

  • North GB, Nobel PS (1991) Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (agavaceae). Am J Bot 78:906–915

    Article  Google Scholar 

  • North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant Cell Environ 27:219–228. doi:10.1111/j.1365-3040.2003.01137.x

    Article  CAS  Google Scholar 

  • Padgett-Johnson M, Williams LE, Walker MA (2003) Vine water relations, gas exchange, and vegetative growth of seventeen Vitis species grown under irrigated and nonirrigated conditions in California. J Am Soc Hortic Sci 128:269–276

    Google Scholar 

  • Parent B, Hachez C, Redondo E et al (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012. doi:10.1104/pp.108.130682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546

    Article  Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740. doi:10.1007/s00425-007-0520-4

    Article  CAS  PubMed  Google Scholar 

  • Péret B, Li G, Zhao J et al (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14:991–998. doi:10.1038/ncb2573

    Article  PubMed  CAS  Google Scholar 

  • Postaire O, Tournaire-Roux C, Grondin A et al (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152:1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    CAS  PubMed  Google Scholar 

  • Queen WH (1967) Radial movement of water and 32P through suberized and unsuberized roots of grape. PhD thesis, Duke University, Durham, NC

    Google Scholar 

  • Sade N, Vinocur BJ, Diber A et al (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661. doi:10.1111/j.1469-8137.2008.02689.x

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R et al (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T et al (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577. doi:10.1093/pcp/pci172

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Ahamed A, Murai M et al (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39

    Article  CAS  PubMed  Google Scholar 

  • Seversike T, Sermons S, Sinclair T et al (2014) Physiological properties of a drought-resistant wild soybean genotype: transpiration control with soil drying and expression of root morphology. Plant Soil 374:359–370

    Article  CAS  Google Scholar 

  • Shangguan Z-P, Lei T-W, Shao M-A, Xue Q-W (2005) Effects of phosphorus nutrient on the hydraulic conductivity of Sorghum (Sorghum vulgare Pers.) seedling roots under water deficiency. J Integr Plant Biol 47:421–427. doi:10.1111/j.1744-7909.2005.00069.x

    Article  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C et al (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemens JA, Zwiazek JJ (2004) Changes in root water flow properties of solution culture-grown trembling aspen (Populus tremuloides) seedlings under different intensities of water-deficit stress. Physiol Plant 121:44–49. doi:10.1111/j.0031-9317.2004.00291.x

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:46–56

    Article  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Suku S, Knipfer T, Fricke W (2014) Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)? Ann Bot 113:385–402

    Article  PubMed  Google Scholar 

  • Tazawa M, Ohkuma E, Shibasaka M, Nakashima S (1997) Mercurial-sensitive water transport in barley roots. J Plant Res 110:435–442

    Article  CAS  Google Scholar 

  • Tornroth-Horsefield S, Wang Y, Hedfalk K et al (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H et al (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  CAS  PubMed  Google Scholar 

  • UN-FAO. 2002. Crops and drops: making the best use of water for agriculture. Rome: Food and Agriculture Organization of the United Nations. Available at: ftp://ftp.fao.org/docrep/fao/005/y3918e/y3918e00.pdf. Accessed 11 Oct 2011..

  • Vandeleur RK, Mayo G, Shelden MC et al (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460. doi:10.1104/pp.108.128645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeleur RK, Sullivan W, Athman A et al (2014) Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. Plant Cell Environ 37:520–538. doi:10.1111/pce.12175

    Article  CAS  PubMed  Google Scholar 

  • Volkov V, Hachez C, Moshelion M et al (2007) Water permeability differs between growing and non-growing barley leaf tissues. J Exp Bot 58:377–390. doi:10.1093/jxb/erl203

    Article  CAS  PubMed  Google Scholar 

  • Wan X (2010) Osmotic effects of NaCl on cell hydraulic conductivity of corn roots. Acta Biochim Biophys Sin Shanghai 42:351–357. doi:10.1093/abbs/gmq029

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Zwiazek JJ (1999) Mercuric chloride effects on root water transport in aspen seedlings. Plant Physiol 121:939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li Y, Ji W, et al (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168:1241–8. doi: 10.1016/j.jplph.2011.01.016

    Google Scholar 

  • Wang M, Ding L, Gao L, et al (2016) The Interactions of aquaporins and mineral nutrients in higher plants. Int J Mol Sci 17:1229. doi: 10.3390/ijms17081229

  • Wei W, Alexandersson E, Golldack D et al (2007) HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues. Plant Cell Physiol 48:1132–1147

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Steudle E (2006) Oxidative gating of water channels (aquaporins) in corn roots. Plant Cell Environ 29:459–470

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Peng YH, Zhang MH et al (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608. doi:10.1038/sj.cr.7310077

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schäffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981. doi:10.1093/jxb/eri294

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Gambetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gambetta, G.A., Knipfer, T., Fricke, W., McElrone, A.J. (2017). Aquaporins and Root Water Uptake. In: Chaumont, F., Tyerman, S. (eds) Plant Aquaporins. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-49395-4_6

Download citation

Publish with us

Policies and ethics