Skip to main content

Reactive Trace Gas and Aerosol Fluxes

  • 647 Accesses

Part of the Ecological Studies book series (ECOLSTUD,volume 229)

Abstract

Quantifying the atmosphere-surface exchange of reactive trace gases and aerosols is extremely important for a full understanding of biogeochemical cycles and their implications for air quality and climate. However, turbulent fluxes of reactive gases such as ozone and volatile organic compounds (VOC) as well as aerosol particles are still difficult to measure. Chemical reactions contribute to changes in trace gas or aerosol concentrations, and production or loss processes have to be carefully separated from turbulent transport. Also, for many trace gas measurements and for size-resolved and chemically speciated aerosol measurements, instruments are limited with respect to time resolution, sensitivity, and accuracy, which restricts their application in micrometeorological techniques. Here, we present flux measurements of reactive trace gases and aerosols above tall vegetation. We focus on ozone deposition and its implications for the NO/NO2/O3 triad, biogenic emissions of volatile organic compounds and their subsequent oxidation reactions, and finally, turbulent aerosol fluxes in a spruce forest ecosystem.

Keywords

  • Nitric Oxide
  • Deposition Flux
  • Turbulent Transport
  • Emission Flux
  • Volatile Organic Compound Emission

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

M. J. Deventer: Affiliation during the work at the Waldstein sites—University of Münster, Institut für Landschaftsökologie, Heisenbergstr. 2, 48149 Münster, Germany.

L. Voß, V. Wolff: Affiliation during the work at the Waldstein sites—Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.

M. Sörgel, S. Schmitt: Affiliation during the work at the Waldstein sites—Atmospheric Chemistry, University of Bayreuth, 95440 Bayreuth, Germany.

A. Held: Affiliation during the work at the Waldstein sites before 2003—Department of Climatology, Bayreuth Institute of Terrestrial Ecosystem Research (BITÖK), University of Bayreuth, Germany.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-49389-3_9
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-49389-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3

References

  • Altimir N, Kolari P, Tuovinen J-P, Vesala T, Bäck J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeoscience 3:209–228

    CAS  CrossRef  Google Scholar 

  • Bargsten A, Falge E, Pritsch K, Huwe B, Meixner FX (2010) Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types. Biogeoscience 7:1425–1441

    CAS  CrossRef  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 571–657

    Google Scholar 

  • Breuninger C, Oswald R, Kesselmeier J, Meixner FX (2012) The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field. Atmos Meas Tech 5:955–989

    CAS  CrossRef  Google Scholar 

  • Breuninger C, Meixner FX, Kesselmeier J (2013) Field investigations of nitrogen dioxide (NO2) exchange between plants and the atmosphere. Atmos Chem Phys 13:773–790

    CrossRef  Google Scholar 

  • Deventer MJ, Held A, El-Madany TS, Klemm O (2015) Size-resolved eddy covariance fluxes of nucleation to accumulation mode aerosol particles over a coniferous forest. Agric Forest Meteorol 214–215:328–340

    CrossRef  Google Scholar 

  • Fares S, Loreto F, Kleist E, Wildt J (2008) Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biol 10:44–54

    CAS  CrossRef  PubMed  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower troposphere. Academic Press, San Diego, CA, p. 969

    Google Scholar 

  • Foken T, Meixner FX et al (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    CAS  CrossRef  Google Scholar 

  • Forkel R, Rappenglück B, Steinbrecher R, Klemm O, Held A, Graus M, Grabmer W, Hansel A (2006) Trace gas exchange and gas phase chemistry in a Norway spruce forest: a study with a coupled 1-dimensional canopy atmospheric chemistry emission model. Atmos Environ 40:S28–S42

    CAS  CrossRef  Google Scholar 

  • Fuentes JD, Gillespie TJ, Den Hartog G, Neumann HH (1992) Ozone deposition onto a deciduous forest during dry and wet conditions. Agric Forest Meteorol 62:1–18

    CrossRef  Google Scholar 

  • Ganzeveld L, Valverde-Canossa J, Moortgat GK, Steinbrecher R (2006a) Evaluation of peroxide exchanges over a coniferous forest in a single-column chemistry-climate model. Atmos Environ 40:S68–S80

    CAS  CrossRef  Google Scholar 

  • Ganzeveld L, Klemm O, Rappenglück B, Valverde-Canossa J (2006b) Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model. Atmos Environ 40:S21–S27

    CAS  CrossRef  Google Scholar 

  • Grabmer W, Kreuzwieser J, Wisthaler A, Cojocariu C, Graus M, Rennenberg H, Steigner D, Steinbrecher R, Hansel A (2006) VOC emissions from Norway spruce (Picea abies L. [Karst]) twigs in the field—Results of a dynamic enclosure study. Atmos Environ 40:S128–S137

    CAS  CrossRef  Google Scholar 

  • Graus M, Hansel A, Wisthaler A, Lindinger C, Forkel R, Hauff K, Klauer M, Pfichner A, Rappenglück B, Steigner D, Steinbrecher R (2006) A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously. Atmos Environ 40:S43–S54

    CAS  CrossRef  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    CAS  CrossRef  Google Scholar 

  • Güsten H, Heinrich G (1996) On-line measurements of ozone surface fluxes: Part I. Methodology and instrumentation. Atmos Environ 30:897–909

    CrossRef  Google Scholar 

  • Hasson AS, Ho AW, Kuwata KT, Paulson SE (2001) Production of stabilized Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes. 2. Asymmetric and biogenic alkenes. J Geophys Res 106:34143–34153

    CAS  CrossRef  Google Scholar 

  • Held A, Klemm O (2006) Direct measurement of turbulent particle exchange with a twin CPC eddy covariance system. Atmos Environ 40:S92–102

    CAS  CrossRef  Google Scholar 

  • Held A, Hinz K-P, Trimborn A, Spengler B, Klemm O (2003) Towards direct measurement of turbulent vertical fluxes of compounds in atmospheric aerosol particles. Geophys Res Lett 30:2016. doi:10.1029/2003GL017854

    CrossRef  Google Scholar 

  • Held A, Nowak A, Birmili W, Wiedensohler A, Forkel R, Klemm O (2004) Observations of particle formation and growth in a mountainous forest region in central Europe. J Geophys Res 109:D23204. doi:10.1029/2004JD005346

    CrossRef  Google Scholar 

  • Held A, Nowak A, Wiedensohler A, Klemm O (2006) Field measurements and size-resolved model simulations of turbulent particle transport to a forest canopy. J Aerosol Sci 37:786–798

    CAS  CrossRef  Google Scholar 

  • Karl T, Guenther A, Jordan A, Fall R, Lindinger W (2001) Eddy covariance measurement of biogenic oxygenated VOC emissions from hay harvesting. Atmos Environ 35:491–495

    CAS  CrossRef  Google Scholar 

  • Katata G, Nagai H, Zhang L, Held A, Sera D, Klemm O (2011) Development of an atmosphere-soil-vegetation model for investigation of radioactive materials transport in the terrestrial biosphere. Prog Nuclear Sci Technol 2:530–537

    CrossRef  Google Scholar 

  • Klemm O (2004) Trace gases and particles in the atmospheric boundary layer at the Waldstein site: present state and his historic trends. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 45–58

    CrossRef  Google Scholar 

  • Klemm O, Mangold A (2001) Ozone deposition at a forest site in NE Bavaria. Water Air Soil Poll: Focus 1:223–232

    CAS  CrossRef  Google Scholar 

  • Klemm O, Milford C, Sutton MA, Spindler G, van Putten E (2002) A climatology of leaf surface wetness. Theor Appl Climatol 71:107–117

    CrossRef  Google Scholar 

  • Klemm O, Mangold A, Held A (2004) Turbulent deposition of ozone to a mountainous forest ecosystem. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 203–213

    CrossRef  Google Scholar 

  • Klemm O, Held A, Forkel R, Gasche R, Kanter H-J, Rappenglück B, Steinbrecher R, Müller K, Plewka A, Cojocariu C, Kreuzwieser J, Valverde-Canossa J, Schuster G, Moortgat GK, Graus M, Hansel A (2006) Experiments on forest/atmosphere exchange: climatology and fluxes during two summer campaigns in NE Bavaria. Atmos Environ 40:S3–20

    CAS  CrossRef  Google Scholar 

  • Lenschow DH (1982) Reactive trace species in the boundary layer from a micrometeorological perspective. J Meteor Soc Japan 60:472–480

    CAS  Google Scholar 

  • Lerdau MT, Munger JW, Jacob DJ (2000) The NO2 flux conundrum. Science 289:2291–2293

    CAS  CrossRef  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) Proton-transfer reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354

    CAS  CrossRef  Google Scholar 

  • Müller M, Graus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hörtnagl L, Wohlfahrt G, Karl T, Hansel A (2010) First eddy covariance flux measurements by PTR-TOF. Atmos Meas Tech 3:387–395

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Peters K, Bruckner-Schatt G (1995) The dry deposition of gaseous and particulate nitrogen compounds to a spruce stand. Water Air Soil Poll 85:2217–2222

    CAS  CrossRef  Google Scholar 

  • Peters K, Eiden R (1992) Modelling the dry deposition velocity of aerosol particles to a spruce forest. Atmos Environ 26A:2555–2564

    CAS  CrossRef  Google Scholar 

  • Pilegaard K, Jensen NO, Hummelshoj P (1995) Seasonal and diurnal variation in the deposition velocity of ozone over a spruce forest in Denmark. Water Air Soil Poll 85:2223–2228

    CAS  CrossRef  Google Scholar 

  • Plake D, Sörgel M, Stella P, Held A, Trebs I (2015) Influence of meteorology and anthropogenic pollution on chemical flux divergence of the NO–NO2–O3 triad above and within a natural grassland canopy. Biogeoscience 12:945–959

    CAS  CrossRef  Google Scholar 

  • Pryor SC, Klemm O (2004) Experimentally derived estimates of nitric acid dry deposition velocity and viscous sub-layer resistance at a conifer forest. Atmos Environ 38:2769–2777

    CAS  CrossRef  Google Scholar 

  • Pryor SC, Barthelmie RJ, Jensen B, Jensen NO, Sörensen LL (2002) HNO3 fluxes to a deciduous forest derived using gradient and REA methods. Atmos Environ 36:5993–5999

    CAS  CrossRef  Google Scholar 

  • Pryor SC, Klemm O, Barthelmie R (2003) An investigation of the magnitude of resistance terms in dry deposition fluxes to a conifer forest. In: BACCI workshop on surface flux, micrometeorology and chemistry, Risø, 11–12 November 2003

    Google Scholar 

  • Rinne J, Markkanen T, Ruuskanen TM, Petäjä T, Keronen P, Tang MJ, Crowley JN, Rannik U, Vesala T (2012) Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model. Atmos Chem Phys 12:4843–4854

    CrossRef  Google Scholar 

  • Schmitt SH (2013) Fluxes of monoterpenes from a spruce forest: establishing sampling and analytical procedures. MSc Thesis, University of Bayreuth, Germany

    Google Scholar 

  • Schröter M, Obermeier A, Brüggemann D, Klemm O (2002) Application of a ground-based Lidar for studies of the dynamics of ozone in a mountainous basin. Environ Sci Pollut Res 9:381–384

    CrossRef  Google Scholar 

  • Slinn WGN (1982) Predictions for particle deposition to vegetative surfaces. Atmos Environ 16:1785–1794

    CrossRef  Google Scholar 

  • Smiatek G, Steinbrecher R (2006) Temporal and spatial variation of forest VOC emissions in Germany in the decade 1994–2003. Atmos Environ 40:S166–S177

    CAS  CrossRef  Google Scholar 

  • Steinbrecher R, Klauer M, Hauff K, Stockwell R, Jaeschke W, Dietrich W, Herbert F (2000) Biogenic and anthropogenic fluxes of non-methane hydrocarbons over an urban-impacted forest, Frankfurter Stadtwald, Germany. Atmos Environ 34:3779–3788

    CAS  CrossRef  Google Scholar 

  • Steinbrecher R, Rappenglück B, Hansel A, Graus M, Klemm O, Held A, Wiedensohler A, Nowak A (2004) Vegetation-atmospheric interactions: the emissions of biogenic volatile organic compounds (BVOC) and their relevance to atmospheric particle dynamics. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 215–235

    CrossRef  Google Scholar 

  • Trimborn A, Hinz K-P, Spengler B (2000) Online analysis of atmospheric particles with a transportable laser mass spectrometer. Aerosol Sci Technol 33:191–201

    CAS  CrossRef  Google Scholar 

  • Tsokankunku A (2014) Fluxes of the NO-O3-NO2 triad above a spruce forest canopy in south-eastern Germany. PhD Thesis, University of Bayreuth, Germany

    Google Scholar 

  • Valverde-Canossa J (2004) Sources and sinks of organic peroxides in the planetary boundary layer. PhD Thesis, Johannes Gutenberg Universität Mainz, Germany

    Google Scholar 

  • Valverde-Canossa J, Ganzeveld L, Rappenglück B, Steinbrecher R, Klemm O, Schuster G, Moortgat GK (2006) First measurements of H2O2 and organic peroxides surface fluxes by the relaxed eddy-accumulation technique. Atmos Environ 40:S55–S67

    CAS  CrossRef  Google Scholar 

  • Vilà-Guerau de Arellano J, Duynkerke PG, Builtjes PJH (1993) The divergence of the turbulent diffusion flux in the surface layer due to chemical reactions: the NO-O3-NO2 system. Tellus 45B:23–33

    CrossRef  Google Scholar 

  • Voß L (2015) Measurements and modeling of ozone fluxes in and above Norway spruce canopies. PhD Thesis, Johannes Gutenberg University Mainz, Germany

    Google Scholar 

  • Wehner B, Siebert H, Hermann M, Ditas F, Wiedensohler A (2011) Characterisation of a new Fast CPC and its application for atmospheric particle measurements. Atmos Meas Tech 4:823–833

    CAS  CrossRef  Google Scholar 

  • Wolff V, Trebs I, Ammann C, Meixner FX (2010a) Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: an analysis of precision requirements and flux errors. Atmos Meas Tech 3:187–208

    CAS  CrossRef  Google Scholar 

  • Wolff V, Trebs I, Foken T, Meixner FX (2010b) Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy. Biogeoscience 7:1729–1744

    CAS  CrossRef  Google Scholar 

  • Zhang L, Gong S, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35:549–560

    CAS  CrossRef  Google Scholar 

  • Zhang L, Brook JR, Vet R (2002) On ozone dry deposition – with emphasis on non-stomatal uptake and wet canopies. Atmos Environ 36:4787–4799

    CAS  CrossRef  Google Scholar 

  • Zhu Z, Tsokankunku A, Plake D, Falge E, Foken T, Meixner FX (2009) Multi-level eddy covariance measurements for ozone fluxes above, within and below spruce forest canopy. In: Luers J, Foken T (eds) Proceedings of the international conference of atmospheric transport and chemistry in forest ecosystems. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol. ISSN 1614–8916. 40:32

    Google Scholar 

Download references

Acknowledgments

The research summarized in this chapter was funded by the Federal Ministry of Education, Science, Research and Technology (BMBF, PT BEO 51-0339476 C, and PT UKF 07ATF25) and the German Science Foundation (DFG) in the first EGER period (IOP1/2: ME 4100/4-1) and in the second EGER period (IOP3: PAK 446), as well as HE 5214/4-1. The authors acknowledge support by all participants of the BEWA 2000 and EGER field experiments and by the technical staff of the University of Bayreuth. Scientific contributions and instrumental support by Otto Klemm (WWU Münster, Germany) are gratefully acknowledged. The 2013 VOC REA flux measurements were supported by A. A. Turnipseed and A. B. Guenther, then at the National Center for Atmospheric Research (Boulder, Colorado, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Held .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Held, A. et al. (2017). Reactive Trace Gas and Aerosol Fluxes. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_9

Download citation