Skip to main content

Trace Gas Exchange at the Forest Floor

  • Chapter
  • First Online:
Energy and Matter Fluxes of a Spruce Forest Ecosystem

Part of the book series: Ecological Studies ((ECOLSTUD,volume 229))

Abstract

Exchange conditions at the forest floor are complex due to the heterogeneity of sources and sinks and the inhomogeneous radiation but are important for linking soil respiration to measurements in the trunk space or above canopy. Far more attention has therefore been paid to above and within canopy flows, but even studies that addressed forest floor exchange do not present measurements below 1 m or 2 m. We used a multilayer model that explicitly resolves the laminar layer, the buffer layer, and the turbulent layer to calculate fluxes from the measured profiles in the lowest meter above ground and to calculate effective surface concentrations from given fluxes. The calculated fluxes were compared to measured eddy covariance fluxes of sensible heat and O3 and to chamber derived soil fluxes of CO2 and 222Rn. Sensible heat fluxes agreed surprisingly well given the heterogeneity of radiative heating and the generally low fluxes (max. 25 W m−2). The chamber fluxes turned out to be not comparable as the chamber fluxes were too low, probably due to one of the well-known problems of enclosures such as pressure differences, disturbed gradients and exclusion of naturally occurring turbulence events and surface cooling. The O3 fluxes agreed well for high O3 values reaching down to the forest floor during full coupling of the canopy by coherent structures. During most of the time, the model overestimated the fluxes as chemical reactions were dominating within the profile. One new approach was to calculate the effective surface concentration from a given flux and compare this to measured surface concentrations. This allowed the identification of situations with a coupled and decoupled forest floor layer, which has important consequences for respiration measurements in the trunk space or above canopy and should be considered in upcoming studies.

M. Riederer, T. Foken: Affiliation during the work at the Waldstein sites—University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany

M. Sörgel: Affiliation during the work at the Waldstein sites—University of Bayreuth, Atmospheric Chemistry, 95440 Bayreuth, Germany

D. Plake, Z. Zhu: Affiliation during the work at the Waldstein sites—Max Planck Institute for Chemistry, Biogeochemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric For Meteorol 131:225–232

    Article  Google Scholar 

  • Baldocchi DD, Meyers TP (1991) Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO2 efflux. J Geophys Res 96(D4):7271–7728

    Article  CAS  Google Scholar 

  • Bloomer BJ, Vinnikov KY, Dickerson RR (2010) Changes in seasonal and diurnal cycles of ozone and temperature in the eastern U.S. Atmos Environ 44:2543–2551

    Article  CAS  Google Scholar 

  • Damköhler G (1940) Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z Elektrochem 46:601–652

    Google Scholar 

  • Davidson EA (1992) Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil: an assessment of probable sources and importance relative to annual fluxes. Ecol Bull 42:149–155

    CAS  Google Scholar 

  • Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37

    Article  Google Scholar 

  • Foken T (1979) Vorschlag eines verbesserten Energieaustauschmodells mit Berücksichtigung der molekularen Grenzschicht der Atmosphäre. Z Meteorol 29:32–39

    Google Scholar 

  • Foken T (1984) The parametrisation of the energy exchange across the air-sea interface. Dyn Atmos Oceans 8:297–305

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin, Heidelberg, 308 pp, (2nd edition 2017)

    Google Scholar 

  • Foken T, Kitajgorodskij SA, Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Bound-Lay Meteorol 15:289–300

    Article  Google Scholar 

  • Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  CAS  Google Scholar 

  • Horii CP, Munger JW, Wofsy S, Zahniser M, Nelson D, McManus JB (2004) Fluxes of nitrogen oxides over a temperate deciduous forest. J Geophys Res 109:D08305

    Article  Google Scholar 

  • Hübner J, Siebicke L, Lüers J, Foken T (2016) Forest climate in vertical and horizontal scales. In: Foken T (ed) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Springer, Berlin, Heidelberg

    Google Scholar 

  • Kimball BA, Lemon ER (1971) Air turbulence effects upon soil gas exchange. Soil Sci Soc Am J 35:16–21

    Article  Google Scholar 

  • Kutzbach L, Schneider J, Sachs T, Giebels M, Nykänen H, Shurpali NJ, Martikainen PJ, Alm J, Wilmking M (2007) CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogiosciences 4:1005–1025

    Article  CAS  Google Scholar 

  • Launiainen S, Rinne J, Pumpanen J, Kulmala L, Kolari P, Keronen P, Siivola E, Pohja T, Hari P, Vesala T (2005) Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ Res 10:569–588

    CAS  Google Scholar 

  • Lehmann BE, Lehmann M, Neftel A, Gut A, Tarakanov SV (1999) 220 Radon calibration of near-surface turbulent gas transport. Geophys Res Lett 5:607–610

    Article  Google Scholar 

  • Lehmann BE, Neftel A, Tarakanov SV (2001) Continuous on-line calibration of diffusive soil-atmosphere trace gas transport using vertical 220Rn- and 222Rn activity profiles. Radiochim Acta 11–12:839–843

    Google Scholar 

  • Lehmann BE, Ihlya B, Salzmann S, Conen F, Simon E (2004) An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil. Radiat Meas 38:43–50

    Article  CAS  Google Scholar 

  • Leighton PA (1961) Photochemistry of air pollution. Academic Press, New York

    Google Scholar 

  • Lüers J, Bareiss J (2010) The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Atmos Chem Phys 10:157–168

    Article  Google Scholar 

  • Lund CP, Riley WJ, Pierce LL, Field B (1999) The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Glob Chang Biol 5:269–281

    Article  Google Scholar 

  • Misson L, Baldocchi DD, Black TA, Blanken PD, Brunet Y, Curiel Yuste J, Dorsey JR, Falk M, Granier A, Irvine MR, Jarosz N, Lamaud E, Launiainen S, Law BE, Longdoz B, Loustau D, McKay M, Paw U KT, Vesala T, Vickers D, Wilson KB, Goldstein AH (2007) Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric For Meteorol 144:14–31

    Article  Google Scholar 

  • Nordbo A, Järvi L, Vesala T (2012) Revised eddy covariance flux calculation methodologies—effect on urban energy balance. Tellus Ser B 64:18184. doi:10.3402/tellusb.v64i0.18184

    Article  Google Scholar 

  • Plake D, Trebs I (2013) An automated system for selective and continuous measurements of vertical thoron profiles for the determination of transport times near the ground. Atmos Meas Tech 6:1017–1030

    Article  Google Scholar 

  • Richter SH, Skeib G (1984) Anwendung eines Verfahrens zur Parametrisierung des turbulenten Energieaustausches in der atmosphärischen Bodenschicht. Geod Geophys Veröff, R II 26:80–85

    Google Scholar 

  • Richter SH, Skeib G (1991) Ein Verfahren zur Parametrisierung von Austauschprozessen in der bodennahen Luftschicht. Abh Meteorol Dienstes DDR 146:15–22

    Google Scholar 

  • Riederer M, Serafimovich A, Foken T (2014) Eddy covariance—chamber flux differences and its dependence on atmospheric conditions. Atmos Meas Tech 7:1057–1064

    Article  CAS  Google Scholar 

  • Scholes MC, Martin R, Scholes RJ, Parsons D, Winstead E (1997) NO and N2O emissions from savanna soils following the first simulated rains of the season. Nutr Cycl Agroecosyst 48:115–122

    Article  CAS  Google Scholar 

  • Serafimovich A, Thomas C, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Lay Meteorol 140:429–451

    Article  Google Scholar 

  • Skeib G (1980) Zur Definition universeller Funktionen für die Gradienten von Windgeschwindigkeit und Temperatur in der bodennahen Luftschicht. Z Meteorol 30:23–32

    Google Scholar 

  • Sodemann H, Foken T (2005) Special characteristics of the temperature structure near the surface. Theor Appl Climatol 80:81–89

    Article  Google Scholar 

  • Sörgel M, Trebs I, Serafimovich A, Moravek A, Held A, Zetzsch C (2011) Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos Chem Phys 11:841–855

    Article  Google Scholar 

  • Subke JA, Tenhunen JD (2004) Direct measurements of CO2 flux below a spruce forest canopy. Agric For Meteorol 126:157–168

    Article  Google Scholar 

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Lay Meteorol 123:317–337

    Article  Google Scholar 

  • Thomas C, Martin J, Goeckede M, Siqueira M, Foken T, Law B, Loescher H, Katul G (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148:1210–1229

    Article  Google Scholar 

  • Thomas CK, Kennedy AM, Selker JS et al (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface layer flow. Bound-Lay Meteorol 142:177–192. doi:10.1007/s10546-011-9672-7

    Article  Google Scholar 

  • U.S. EPA (2006) Air quality criteria for ozone and related photochemical oxidants. EPA/600/R-05/004aF-cF. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Zeeman MJ, Eugster W, Thomas CK (2013) Concurrency of coherent structures and conditionally sampled daytime sub-canopy respiration. Bound-Lay Meteorol 146:1–15

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support by the German Science Foundation (DFG projects EGER, FO 226/16-1, ME 2100/4-1 and ZE 792/4-1) and by the Max Planck Society. For borrowing a static chamber and two radon monitors, we would like to thank Franz Conen from the Department of Environmental Sciences of the University of Basel. We would like to thank Johannes Lüers and Korbinian Hens for sharing their experience with radon measurements at the Waldstein site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Sörgel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sörgel, M. et al. (2017). Trace Gas Exchange at the Forest Floor. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_8

Download citation

Publish with us

Policies and ethics