Skip to main content

Catchment Evapotranspiration and Runoff

Part of the Ecological Studies book series (ECOLSTUD,volume 229)

Abstract

The interplay between precipitation and evapotranspiration determines the input into the hydrological system of a catchment. Annual values of precipitation, evapotranspiration, and runoff measured at the catchment outlet for the 2002–2009 period were available. Annual precipitation clearly surmounted the sum of evapotranspiration and runoff. Part of the observed discrepancy might be due to the heterogeneity of precipitation and evapotranspiration within the catchment which has not been studied in sufficient detail. Annual evapotranspiration fluxes were remarkably constant during this period, whereas precipitation and runoff exhibited much larger interannual variability.

Short-term dynamics of soil matrix potential, groundwater head, and discharge were studied using principal component analysis. About 19 % of the spatial variance of soil matrix potential in the soil in a mature spruce forest was ascribed to the effect of spatially varying root water uptake. In addition, the analysis illustrated the effect of increasing damping and delay of the input signal with increasing depth. That of the runoff at the catchment outlet ranged between that of soil matrix potential at 40 cm depth, pointing to near-surface runoff generation. This gives clear evidence for the respective flowpath during stormflow. Thus, input signals imposed by heavy rainstorms reach the catchment outlet within a few hours. In contrast, changes of evapotranspiration become visible at the catchment outlet only with a few years’ time delay via corresponding changes of groundwater recharge that are transferred through the aquifer.

In hydrological and groundwater models, usually little attention is paid to the mutual interplay between evapotranspiration and root water uptake on the one hand and hydrological processes, especially in shallow groundwater areas. Sound assessments of effects of land use and climate change, however, need to account for that in more detail.

Keywords

  • Shallow Groundwater
  • Vadose Zone
  • Stream Discharge
  • Groundwater Store
  • Root Water Uptake

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

J. Lüers; W. Babel; T. Foken: Affiliation during the work at the Waldstein sites—Department of Micrometeorology, University of Bayreuth, Bayreuth, Germany

G. Lischeid: Affiliation during the work at the Waldstein sites—Department of Hydrogeology and Chair of Ecological Modelling, University of Bayreuth, Bayreuth, Germany

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-49389-3_15
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-49389-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8

References

  • Alewell C, Manderscheid B, Gerstberger P, Matzner E (2000) Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE—Bavaria, Germany. J Plant Nutr Soil Sci 163:509–516

    CAS  CrossRef  Google Scholar 

  • Bayerisches Landesamt für Umwelt (2006) Deutsches Gewässerkundliches Jahrbuch. Rheingebiet, Teil II, Main. Mit einem Anhang: Bayer. Elbegebiet. 01.11.2005–31.12.2006. ISSN 2193-4851

    Google Scholar 

  • Beven K (2001) On fire and rain (or predicting the effects of change). Hydrol Process 15:1397–1399. doi:10.1002/hyp.458

    CrossRef  Google Scholar 

  • Bivand R, Lewin-Koh N (2014) maptools: Tools for reading and handling spatial objects. R package version 0.8-30. http://CRAN.R-project.org/package=maptools

  • Bivand R, Rundel C (2014) rgeos: Interface to Geometry Engine – Open Source (GEOS). R package version 0.3-8. http://CRAN.R-project.org/package=rgeos

  • Bogner C, Wolf B, Schlather M, Huwe B (2008) Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. Eur J Soil Sci 59:103–113. doi:10.1111/j.1365-2389.2007.00974.x

    CrossRef  Google Scholar 

  • Böttcher S, Merz C, Lischeid G, Dannowski R (2014) Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting. J Hydrol 519:1634–1641. doi:10.1016/j.jhydrol.2014.09.048

    CrossRef  Google Scholar 

  • Calder IR, Newson MD (1979) Land use and upland water resources in Britain—A strategic look. J Am Water Resour Assoc 15:1628–1639

    CrossRef  Google Scholar 

  • Charuchittipan D, Babel W, Mauder M, Leps JP, Foken T (2014) Extension of the averaging time in eddy-covariance measurements and its effect on the energy balance closure. Bound-Lay Meteorol 152(3):303–327. doi:10.1007/s10546-014-9922-6

    CrossRef  Google Scholar 

  • Chen YT, Bogner C, Borken W, Stange CF, Matzner E (2011) Minor response of gross N turnover and N leaching to drying, rewetting and irrigation in the topsoil of a Norway spruce forest. Eur J Soil Sci 62:709–717. doi:10.1111/j.1365-2389.2011.01388.x

    CAS  CrossRef  Google Scholar 

  • Foken T (2003) Lufthygienisch-Bioklimatische Kennzeichnung des oberen Egertales. Bayreuther Forum Ökologie. 100:69+XLVIII

    Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367. http://www.jstor.org/stable/40062260

    Google Scholar 

  • Frei S, Lischeid G, Fleckenstein J (2010) Effects of micro-topography on surface-subsurface exchange and runoff generation in a riparian wetland. Adv Water Res 33:1388–1401. doi:10.1016/j.advwatres.2010.07.006

    CrossRef  Google Scholar 

  • Frei S, Knorr KH, Peiffer S, Fleckenstein JH (2012) Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: a virtual modeling experiment. J Geophys Res 117:G00N12. doi:10.1029/2012JG002012

    CrossRef  Google Scholar 

  • Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, a German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 15–41

    CrossRef  Google Scholar 

  • Hohenbrink T, Lischeid G (2015) Does textural heterogeneity matter? Quantifying transformation of hydrological signals in soils. J Hydrol 523:725–738. doi:10.1016/j.jhydrol.2015.02.009

    CrossRef  Google Scholar 

  • Hohenbrink TL, Lischeid G, Schindler U, Hufnagel J (2016) Disentangling land management and soil heterogeneity effects on soil moisture dynamics. Vadose Zone J 15(1), DOI: 10.2136/vzj2015.07.0107

  • Jolliffe IT (2002) Principal component analysis. Springer series in statistics. Springer, New York, 489 pp

    Google Scholar 

  • Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 43:524–527

    CrossRef  Google Scholar 

  • Köstner B, Tenhunen JD, Alsheimer M, Wedler M, Scharfenberg H-J, Zimmermann R, Falge E, Joss U (2001) Controls on evapotranspiration in a spruce forest catchment of the Fichtelgebirge. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in Central Europe, Ecological studies, vol 147. Springer, Berlin, pp 379–415

    CrossRef  Google Scholar 

  • Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction, Information science and statistics. Springer, New York

    CrossRef  Google Scholar 

  • Lehr C, Pöschke F, Lewandowski J, Lischeid G (2015) A novel method to evaluate the effect of a stream restoration on the spatial pattern of hydraulic connection of stream and groundwater. J Hydrol 527:394–401. doi:10.1016/j.jhydrol.2015.04.075

    CAS  CrossRef  Google Scholar 

  • Lischeid G, Bittersohl J (2008) Tracing biogeochemical processes in stream water and groundwater using nonlinear statistics. J Hydrol 357:11–28. doi:10.1016/j.jhydrol.2008.03.013

    CAS  CrossRef  Google Scholar 

  • Lischeid G, Kolb A, Alewell C (2002) Apparent translatory flow in groundwater recharge and runoff generation. J Hydrol 265:195–211

    CAS  CrossRef  Google Scholar 

  • Lischeid G, Büttcher H, Hauck A (2003) Combining data-based and process-based approaches to minimize the complexity of a reactive sulfate transport model. Proceedings of the ModelCARE’2002 conference held at Prague, Czech Republic, June 2002. IAHS-Publications 277:402–408

    Google Scholar 

  • Lischeid G, Alewell C, Moritz K, Bittersohl J (2004) Trends in the input-output relations: the catchment budgets. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 437–456

    CrossRef  Google Scholar 

  • Lischeid G, Kolb A, Alewell C, Paul S (2007) Impact of redox and transport processes in a riparian wetland on stream water quality in the Fichtelgebirge Region, Southern Germany. Hydrol Process 21:123–132. doi:10.1002/hyp.6227

    CAS  CrossRef  Google Scholar 

  • Lischeid G, Natkhin M, Steidl J, Dietrich O, Dannowski R, Merz C (2010) Assessing coupling between lakes and layered aquifers in a complex Pleistocene landscape based on water level dynamics. Adv Water Res 33:1331–1339. doi:10.1016/j.advwatres.2010.08.002

    CrossRef  Google Scholar 

  • Matzner E, Köstner B, Lischeid G (2004) Biogeochemistry of two forested catchments in a changing environment: a synthesis. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 475–490

    CrossRef  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574. doi:10.1126/science.1151915

    CAS  CrossRef  PubMed  Google Scholar 

  • Moritz K, Bittersohl J, Müller FX, Krebs M (1994) Auswirkungen des Sauren Regens und des Waldsterbens auf das Grundwasser. Dokumentation der Methoden und Meßdaten des Entwicklungsvorhabens 1988–1992. Bayerisches Landesamt für Wasserwirtschaft, Materialien No. 40, München, 387 S

    Google Scholar 

  • Partington D, Brunner P, Frei S, Simmons CT, Werner AD, Therrien R, Maier HR, Dandy GC, Fleckenstein JH (2013) Interpreting streamflow generation mechanisms from integrated surface-subsurface flow models of a riparian wetland and catchment. Water Resour Res 49:5501–5519. doi:10.1002/wrcr.20405

    CrossRef  Google Scholar 

  • R Core Team 2014 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagmessers. Berichte des Deutschen Wetterdienstes 194, Offenbach, 93 pp

    Google Scholar 

  • Roberts J (1983) Forest transpiration: a conservative hydrological process? J Hydrol 66:133–141

    CrossRef  Google Scholar 

  • Schilli C, Lischeid G, Rinklebe J (2010) What processes prevail? Analyzing long-term soil-solution monitoring data using nonlinear statistics. Geoderma 158:412–420. doi:10.1016/j.geoderma.2010.06.014

    CAS  CrossRef  Google Scholar 

  • Schmitt A, Glaser B (2011) Organic matter dynamics in a temperate forest as influenced by soil frost. J Plant Nutr Soil Sci 174:754–764. doi:10.1002/jpln.201100009

    CAS  CrossRef  Google Scholar 

  • Strohmeier S, Knorr K-H, Reichert M, Frei S, Fleckenstein JH, Peiffer S, Matzner E (2013) Dynamics of dissolved organic carbon in runoff from a forested catchment: evidence from high frequency measurements. Biogeosci 10:905–916

    CrossRef  Google Scholar 

  • Van Laanen HAJ, Fendeková M, Kupczyk E, Kasprzyk A, Pokojski W (2004) Flow generating processes. In: Tallaksen LM, van Lanen HAJ (eds) Hydrological drought. Processes and estimation methods for streamflow and groundwater, Developments in water science, vol 48. Elsevier, Amsterdam, pp 53–96

    Google Scholar 

  • Weyer C, Peiffer S, Schulze K, Borken W, Lischeid G (2014) Catchments as heterogeneous, multi-species reactors: an integral approach for identifying biogeochemical hot-spots at the catchment’s scale. J Hydrol 519:1560–1571. doi:10.1016/j.jhydrol.2014.09.005

    CAS  CrossRef  Google Scholar 

  • Zahn MT (1995) Transport von Säurebildnern im Untergrund und Bedeutung für die Grundwasserversauerung. In: Proceedings des Internationalen Symposiums zur Grundwasserversauerung durch Atmosphärische Deposition. Ursachen–Auswirkungen– Sanierungsstrategien, 26–28 Oct 1994, Bayreuth. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 3/95: 143–151

    Google Scholar 

Download references

Acknowledgments

The first author is indebted to Andreas Kolb and Christina Weyer who performed most of the hydrological installations, maintenance, and data processing in the Lehstenbach catchment even under harsh conditions. Funding for soil hydrological, groundwater head, and stream discharge measurements had been provided by the German Federal Ministry for Education, Science, Research, and Technology (BMBF, Grant No. PT BEO 51—0339476 A-D) and by the German Research Foundation (DFG) within the Research Group 562 (University of Bayreuth) “Dynamics of Soil Processes Under Extreme Meteorological Boundary Conditions” which is highly appreciated. Long-term measurements of evapotranspiration and precipitation were financed by the German Research Foundation (Fo 226/16-1, Fo 226/21-1) and the Oberfrankenstiftung (Grant. No. 01879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Lischeid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lischeid, G. et al. (2017). Catchment Evapotranspiration and Runoff. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_15

Download citation