Skip to main content

Development of Flux Data Quality Tools

  • Chapter
  • First Online:
Energy and Matter Fluxes of a Spruce Forest Ecosystem

Abstract

At the Waldstein-Weidenbrunnen site, several techniques for data quality control were developed and tested and later on applied at European FLUXNET sites. The history of this development and the specific results for the site form the subject of this chapter. These data quality criteria include integral turbulence characteristics, which are dependent on heterogeneities in the footprint area and inside the canopy. Furthermore, footprint models were applied to determine the footprint climatology and to link these models with the data quality of eddy covariance data. This tool was also applied to find the optimal period for the application of the planar-fit rotation method. The energy balance closure was found to be about 80 % in all periods. These findings were summarized as a schema for data quality control and characterization of FLUXNET sites.

T. Foken, M. Göckede, J. Lüers, L. Siebicke, C. Rebmann, J. Ruppert, C.K. Thomas: Affiliation during the work at the Waldstein sites: Department of Micrometeorology, University of Bayreuth, Bayreuth, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo OC, Moraes OLL, Degrazia GA, Fitzjarrald DR, Manzi AO, Campos JG (2009) Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agric Forest Meteorol 149:1–10

    Article  Google Scholar 

  • Amiro BD (1998) Footprint climatologies for evapotranspiration in a boreal catchment. Agric Forest Meteorol 90:195–201

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  CAS  Google Scholar 

  • Aubinet M, Clement R, Elbers J, Foken T, Grelle A, Ibrom A, Moncrieff H, Pilegaard K, Rannik U, Rebmann C (2003) Methodology for data acquisition, storage and treatment. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests, Ecological studies, vol 163. Springer, Berlin, pp 9–35

    Chapter  Google Scholar 

  • Baldocchi D, Meyers T (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation. Agric Forest Meteorol 90:1–25

    Article  Google Scholar 

  • Blackadar AK (1997) Turbulence and diffusion in the atmosphere. Springer, Berlin/Heidelberg, 185 pp

    Book  Google Scholar 

  • Cellier P, Brunet Y (1992) Flux-gradient relationships above tall plant canopies. Agric Forest Meteorol 58:93–117

    Article  Google Scholar 

  • Charuchittipan D, Babel W, Mauder M, Leps J-P and Foken T (2014) Extension of the averaging time of the eddy-covariance measurement and its effect on the energy balance closure. Bound-Layer Meteorol 152:303–327

    Article  Google Scholar 

  • Claussen M (1990) Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmos Environ Part A 24:1349–1360

    Article  Google Scholar 

  • DeBruin HAR, Bink NJ, Kroon LJ (1991) Fluxes in the surface layer under advective conditions. In: Schmugge TJ, André JC (eds) Workshop on land surface evaporation, measurement and parameterization. Springer, New York, NY, pp 157–169

    Chapter  Google Scholar 

  • Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600

    Article  CAS  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for long term energy flux data sets. Agric Forest Meteorol 107:71–77

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, Part I: Averaging and coordinate rotation. Bound-Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Foken T (2008a) The energy balance closure problem – an overview. Ecol Appl 18:1351–1367

    Article  PubMed  Google Scholar 

  • Foken T (2008b) Micrometeorology, Springer, Berlin, 308 pp (2nd edition 2017)

    Book  Google Scholar 

  • Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agric Forest Meteorol 127:223–234

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Forest Meteorol 78:83–105

    Article  Google Scholar 

  • Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315

    Google Scholar 

  • Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 experiment. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. 48:75 pp

    Google Scholar 

  • Foken T, Mangold A, Hierteis M, Wichura B, Rebmann C (1999) Characterization of the heterogeneity of the terrain by normalized turbulence characteristics. 13th symposium on boundary layer and turbulence, Dallas, TX, 10–15 Jan 1999. Am Meteorol Soc, Boston, pp 26–27

    Google Scholar 

  • Foken T, Mangold A, Rebmann C, Wichura B (2000) Characterization of a complex measuring site for flux measurements. 14th symposium on boundary layer and turbulence, Aspen, CO, 07–11 Aug 2000. Am Meteorol Soc, Boston, pp 388–389

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012a) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  CAS  Google Scholar 

  • Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012b) Corrections and data quality. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Garratt JR (1978) Flux profile relations above tall vegetation. Quart J Roy Meteorol Soc 104:199–211

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

    Google Scholar 

  • Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric Forest Meteorol 127:175–188

    Article  Google Scholar 

  • Göckede M, Mauder M, Foken T (2005a) Report on results for the site Weidenbrunnen (DE-Wei), CARBOEUROPE-IP, Task 1.2.1 Footprint and quality assessment of main flux sites (unpublished). University of Bayreuth, Department of Micrometeorology, Bayreuth, 16 pp

    Google Scholar 

  • Göckede M, Markkanen T, Mauder M, Arnold K, Leps JP, Foken T (2005b) Validation of footprint models using natural tracer measurements from a field experiment. Agric Forest Meteorol 135:314–325

    Article  Google Scholar 

  • Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of a footprint-based approach for the characterisation of complex measuring sites. Bound-Layer Meteorol 118:635–655

    Article  Google Scholar 

  • Göckede M, Thomas C, Markkanen T, Mauder M, Ruppert J, Foken T (2007) Sensitivity of Lagrangian stochastic footprints to turbulence statistics. Tellus. 59B:577–586

    Article  Google Scholar 

  • Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond J-M, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers JA, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff JB, Montagnani L, Moors E, Ourcival J-M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeoscience 5:433–450

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan F-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: method and critical evaluation of accuracy. Glob Chang Biol 2:159–168

    Article  Google Scholar 

  • Hasager CB, Jensen NO (1999) Surface-flux aggregation in heterogeneous terrain. Quart J Roy Meteorol Soc 125:2075–2102

    Article  Google Scholar 

  • Hasager CB, Nielsen NW, Jensen NO, Boegh E, Christensen JH, Dellwik E, Soegaard H (2003) Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model. Bound-Layer Meteorol 109:227–254

    Article  Google Scholar 

  • Hicks BB, Baldocchi DD, Meyers TP, Hosker RP Jr, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972

    Article  Google Scholar 

  • Johansson C, Smedman A, Högström U, Brasseur JG, Khanna S (2001) Critical test of Monin-Obukhov similarity during convective conditions. J Atmos Sci 58:1549–1566

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, NY, 289 pp

    Google Scholar 

  • Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology, Springer, Heidelberg, 239 pp

    Book  Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New York, NY, 239 pp

    Google Scholar 

  • Markkanen T, Steinfeld G, Kljun N, Raasch S, Foken T (2009) Comparison of conventional Lagrangian stochastic footprint models against LES driven footprint estimates. Atmos Chem Phys 9:5575–5586

    Article  CAS  Google Scholar 

  • Massman WJ, Weil JC (1999) An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Bound-Layer Meteorol 91:81–107

    Article  Google Scholar 

  • Mauder M, Foken T (2015) Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update). Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol, ISSN 1614–8916. 62:64

    Google Scholar 

  • Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software. Biogeoscience 5:451–462

    Article  CAS  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric Forest Meteorol 169:122–135

    Article  Google Scholar 

  • Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationship over a boreal forest – roughness sublayer correction. Agric Forest Meteorol 98-99:645–648

    Article  Google Scholar 

  • Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale ß meteorological model. Tellus 48A:733–749

    Article  Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000, Part I: Overview and energy balance. Bound-Layer Meteorol 123:1–28

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence – models and methods for engineering applications. Wiley, New York, NY, 397 pp

    Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound-Layer Meteorol 11:355–361

    Article  Google Scholar 

  • Paw U KT, Baldocchi D, Meyers TP, Wilson KB (2000) Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Bound-Layer Meteorol 97:487–511

    Article  Google Scholar 

  • Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over heterogeneous forest. Bound-Layer Meteorol 97:137–166

    Article  Google Scholar 

  • Rannik Ü, Markkanen T, Raittila T, Hari P, Vesala T (2003) Turbulence statistics inside and above forest: influence on footprint prediction. Bound-Layer Meteorol 109:163–189

    Article  Google Scholar 

  • Rannik Ü, Sogachev A, Foken T, Göckede M, Kljun N, Leclerc MY, Vesala T (2012) Footprint analysis. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Berlin, pp 211–261

    Chapter  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Layer Meteorol 78:351–382

    Article  Google Scholar 

  • Rebmann C (2003) Kohlendioxid-, Wasserdampf- und Energieaustausch eines Fichtenwaldes in Mittelgebirgslage. Dissertation, Universität Bayreuth, Bayreuth, 149 pp

    Google Scholar 

  • Rebmann C, Göckede M, Foken T, Aubinet M, Aurela M, Berbigier P, Bernhofer C, Buchmann N, Carrara A, Cescatti A, Ceulemans R, Clement R, Elbers J, Granier A, Grünwald T, Guyon D, Havránková K, Heinesch B, Knohl A, Laurila T, Longdoz B, Marcolla B, Markkanen T, Miglietta F, Moncrieff H, Montagnani L, Moors E, Nardino M, Ourcvial J-M, Rambal S, Rannik U, Rotenberg E, Sedlak P, Unterhuber G, Vesala T, Yakir D (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climat 80:121–141

    Article  Google Scholar 

  • Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 59–83

    Chapter  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439

    Article  Google Scholar 

  • Reithmaier LM, Göckede M, Markkanen T, Knohl A, Churkina G, Rebmann C, Buchmann N, Foken T (2006) Use of remotely sensed land use classification for a better evaluation of micrometeorological flux measurement sites. Theor Appl Climat 84:219–233

    Article  Google Scholar 

  • Richards JA (1993) Remote sensing digital image analyse – an introduction. Springer, Berlin, 340 pp

    Book  Google Scholar 

  • Ruppert J, Mauder M, Thomas C, Lüers J (2006) Innovative gap-filling strategy for annual sums of CO2 net ecosystem exchange. Agric Forest Meteorol 138:5–18

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound-Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric Forest Meteorol 87:179–200

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound-Layer Meteorol 50:355–373

    Article  Google Scholar 

  • Siebicke L (2008) Footprint synthesis for the FLUXNET site Waldstein/Weidenbrunnen (DE-Bay) during the EGER experiment. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol, ISSN 1614–8916. 38:45 pp

    Google Scholar 

  • Siebicke L, Hunner M, Foken T (2012) Aspects of CO2-advection measurements. Theor Appl Climat 109:109–131

    Article  Google Scholar 

  • Steinfeld G, Raasch S, Markkanen T (2008) Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian stochastic particle model embedded into large-eddy simulation. Bound-Layer Meteorol 129:225–248

    Article  Google Scholar 

  • Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Serrano-Ortiz P, Sottocornola M, Saunders M, Spano D, Vaccari F, Varlagin A (2012) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape-scale heterogeneity. Agric Forest Meteorol 171–172:137–152

    Google Scholar 

  • Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. In: Nieuwstadt FTM, Van Dop H (eds) Atmospheric turbulence and air pollution modelling. D. Reidel Publishing Company, Dordrecht, pp 37–68

    Google Scholar 

  • Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. 15th conference on turbulence and boundary layers, Wageningen, NL, 15–19 July 2002. Am Meteorol Soc, Boston, pp 129–132

    Google Scholar 

  • Thomas C, Foken T (2007a) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound-Layer Meteorol 122:123–147

    Article  Google Scholar 

  • Thomas C, Foken T (2007b) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Layer Meteorol 123:317–337

    Article  Google Scholar 

  • Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Clim Appl Meteorol 11:783–792

    Article  Google Scholar 

  • Vesala T, Rannik U, Leclerc MY, Foken T, Sabelfeld KK (2004) Foreword: Flux and concentration footprints. Agric Forest Meteorol 127:111–116

    Article  Google Scholar 

  • Vesala T, Kljun N, Rannik U, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152:653–666

    Article  CAS  PubMed  Google Scholar 

  • Vesala T, Kljun N, Rannik Ü, Rinne J, Sogatchev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2010) Flux and concentration footprint modelling. In: Hanrahan G (ed) Modelling of pollutants in complex environmental systems, vol II. ILM Publications, St. Albans, Glendale, pp 339–355

    Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Law B, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–234

    Article  Google Scholar 

  • Wohlfahrt G, Anfang C, Bahn M, Haslwanter A, Newesely C, Schmitt M, Drösler M, Pfadenhauer J, Cernusca A (2005) Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agric Forest Meteorol 128:141–162

    Article  Google Scholar 

  • Wulfmeyer V, Behrendt A, Kottmeier C, Corsmeier U, Barthlott C, Craig G, Hagen M, Althausen D, Aoshima F, Arpagaus M, Bauer HS, Bennett L, Blyth A, Brandau C, Champollion C, Crewell S, Dick G, Di Girolamo P, Dorninger M, Dufournet Y, Eigenmann R, Engelmann R, Flamant C, Foken T, Gorgas T, Grzeschik M, Handwerker J, Hauck C, Höller H, Junkermann W, Kalthoff N, Kiemle C, Klink S, König M, Krauß L, Long CN, Madonna F, Mobbs S, Neininger B, Pal S, Peters G, Pigeon G, Richard E, Rotach M, Russchenberg H, Schwitalla T, Smith V, Steinacker R, Trentmann J, Turner DD, van Baelen J, Vogt S, Volkert H, Weckwerth T, Wernli H, Wieser A, Wirth M (2011) The convective and orographically induced precipitation study (COPS): the scientific strategy, the field phase, and research highlights. Quart J Roy Meteorol Soc 137:3–30

    Article  Google Scholar 

  • Wyngaard JC (1988) Flow-distortion effects on scalar flux measurements in the surface layer: implications for sensor design. In: Hicks BB (ed) Topics in micrometeorology. A Festschrift for Arch Dyer. Springer Netherlands, Dordrecht, pp 19–26

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the EU projects CARBOEUROFLUX (ENVK2-1999-00229), CARBOEUROPE-IP (GOCE-CT-2003-505572), and INTAS 1501, projects of the German Federal Ministry of Education and Research (VERTIKO project, afo-2000, 07 ATF37; fourth project of BITÖK, PT BEO 51-0339476 D), and the German Science Foundation, project FO 226/16-1. Furthermore, we thank Tobias Biermann, Martina Hunner, Alexander Mangold, Lucia Reithmaier (now Seebach), and Friederike Rütz for the calculation of selected results within their master theses and Matthias Mauder and Tiina Markkanen for supporting the CARBOEUROPE-IP data quality analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Foken, T. et al. (2017). Development of Flux Data Quality Tools. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_12

Download citation

Publish with us

Policies and ethics