Okra Fibers: Potential Material for Green Biocomposites

  • Gazi Md Arifuzzaman KhanEmail author
  • Nazire Deniz Yilmaz
  • Kenan Yilmaz
Part of the Green Energy and Technology book series (GREEN)


Okra bahmia (Abelmoschus esculentus) plant is considered as one of the abundant sources of natural fibers. Huge amount of okra plant stem is discarded on the field annually after collecting vegetable, without proper utilization. However, this biomass from the okra plant is a renewable, biodegradable, cost efficient and low-density source for production of bast fibers, and other industrial cost-efficient eco-friendly materials. The research on okra bast fiber has started in 2007. After that, the fiber extraction process, composition of fiber, morphology and performance properties of fiber, fiber modification techniques, and some important applications of the fiber etc. have been established. It was found that the okra bast fiber contains high cellulose content, excellent mechanical strength and stiffness, and good thermal resistance which are comparable to some traditional bast fibers like jute, hemp and ramie. Some okra bast fiber reinforced biocomposites were successfully fabricated with different matrices including biodegradable corn starch, Poly(lactic acid), P(vinyl alcohol), urea formaldehyde resin etc. via application of various processing methods. These studies revealed that the okra bast fiber biocomposites exhibited better mechanical properties, water resistance and thermal properties at optimized processing conditions. Therefore, by suitably optimizing the fiber, matrix, processing conditions, the future expectations of the okra bast fibers can be dramatically enhanced and its usage in composite field can be widened.


Okra bast fibers Green composites Biocomposite processing Properties of biocomposites 


  1. Ahmad SH, Rasid R, Bonnia NN, Zainol I, Mamun AA, Bledzki AK, Beg MDH (2011) Polyester-kenaf composites: effects of alkali fiber treatment and toughening of matrix using liquid natural rubber. J Compos Mater 45:203–217. doi: 10.1177/0021998310373514
  2. Alam MS, Khan GMA (2007) Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. J Text Apparel Technol Manag 5:1–9Google Scholar
  3. Arbelaiz A, Fernández B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592. doi: 10.1016/j.compscitech.2005.01.008
  4. Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–17CrossRefGoogle Scholar
  5. Bismarck A, Aranberri-Askargorta I, Springer J, Mohanty AK, Misra M, Hinrichsen G, Czapla S (2001) Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem 3:100–107. doi: 10.1039/b100365h CrossRefGoogle Scholar
  6. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. doi: 10.1016/S0079-6700(98)00018-5 CrossRefGoogle Scholar
  7. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470. doi: 10.1016/j.compscitech.2006.08.024 CrossRefGoogle Scholar
  8. Colom X, Carrasco F, Pagès P, Cañavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63:161–169. doi: 10.1016/S0266-3538(02)00248-8 CrossRefGoogle Scholar
  9. Dányádi L, Móczó J, Pukánszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A Appl Sci Manuf 41:199–206. doi: 10.1016/j.compositesa.2009.10.008 CrossRefGoogle Scholar
  10. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. doi: 10.1016/j.compscitech.2009.09.013 CrossRefGoogle Scholar
  11. De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254. doi: 10.1016/j.compscitech.2010.11.023 CrossRefGoogle Scholar
  12. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. doi: 10.1016/j.compscitech.2006.06.019 CrossRefGoogle Scholar
  13. Dhande GA, Patil VM, Raut R V, Rajput JC, Ingle AG (2012) Regeneration of okra (Abelmoschus esculentus L.) via apical shoot culture system 11:15226–15230. doi: 10.5897/AJB12.907
  14. Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35:1267–1276. doi: 10.1016/j.compositesa.2004.04.004 CrossRefGoogle Scholar
  15. Evans JD, Akin DE, Foulk JA (2002) Flax-retting by polygalacturonase-containing enzyme mixtures and effects on fiber properties. J Biotechnol 97:223–31. doi: 10.1016/S0168-1656(02)00066-4
  16. FAOSTAT (2015) Okra, production quantity (tons)—for all countriesGoogle Scholar
  17. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003 CrossRefGoogle Scholar
  18. Ford ENJ, Mendon SK, Thames SF, Ph D, Rawlins JW (2010) X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fiber Fabr 5:10–20Google Scholar
  19. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Foresti ML, Vazquez A, Kenny JM (2013a) Okra (Abelmoschus esculentus) fibre based PLA composites: mechanical behaviour and biodegradation. J Polym Environ 21:726–737. doi: 10.1007/s10924-013-0571-5
  20. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013b) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230. doi: 10.1002/app.38524 CrossRefGoogle Scholar
  21. Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and charaterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512Google Scholar
  22. Gassan J, Bledzki AK (1997) Effect of moisture content on the properties of silanized jute-epoxy composites. Polym Compos 18:179–184. doi: 10.1002/pc.10272 CrossRefGoogle Scholar
  23. Guleria A, Singha AS, Rana RAJK (2015) Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch-based biocomposites. Adv Polym Technol 21646:1–9. doi: 10.1002/adv.21646 Google Scholar
  24. Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos Part A Appl Sci Manuf 41:596–603. doi: 10.1016/j.compositesa.2010.01.006 CrossRefGoogle Scholar
  25. Jankauskienė Z, Gruzdevienė E (2013) Physical parameters of dew retted and water retted hemp (Cannabis sativa L.) fibres. Zemdirbyste Agric 100:71–80. doi: 10.13080/z-a.2013.100.010 CrossRefGoogle Scholar
  26. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053 CrossRefGoogle Scholar
  27. Karmaker AC (1997) Effect of water absorption on dimensional stability and impact energy of jute fibre reinforced polypropylene. J Mater Sci Lett 16:462–464. doi: 10.1023/A:1018508209022 CrossRefGoogle Scholar
  28. Khan GMA, Saheruzzaman M, Razzaque SMA, Islam MS, Alam MS, Islam MM (2009a) Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Indian J Fibre Text Res 34:321–327Google Scholar
  29. Khan GMA, Shaheruzzaman M, Rahman MH, Abdur Razzaque SM, Islam MS, Alam MS (2009b) Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers Polym 10:65–70CrossRefGoogle Scholar
  30. Khan GMA, Alam MS, Terano M (2012a) Thermal characterization of chemically treated coconut husk fibre. Indian J Fibre Text Res 37:20–26Google Scholar
  31. Khan GMA, Shahrear Palash SR, Shamsul Alam M, Chakraborty AK, Gafur MA, Terano M (2012b) Isolation and characterization of betel nut leaf fiber: its potential application in making composites. Polym Compos 33:764–772. doi: 10.1002/pc.22204 CrossRefGoogle Scholar
  32. Khan GMA, Alam Shams MS, Kabir MR, Gafur MA, Terano M, Alam MS (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci 128:1020–1029. doi: 10.1002/app.38197
  33. Khan GMA, Abedin SMA, Choudhury MJ, Gafur MA, Alam MS (2014a) Renewable okra bast fiber reinforced phenol formaldehyde resin composites: mechanical and thermal studies. Res Rev: J Mater Sci 2:32–36Google Scholar
  34. Khan GMA, Haque MA, Alam MS (2014b) Studies on okra bast fibre-reinforced phenol formaldehyde resin composites. In: Hakeem KR, Rashid U, Jawaid M (eds) Biomass and bioenergy: processing and properties. Springer, Switzerland, pp 157–175Google Scholar
  35. Khan GMA, Shaikh H, Alam MS, Gafur MA (2015) Effect of chemical treatments on the physical properties of non-woven jute/PLA biocomposites. Res Rev: J Mater Sci 10:7386–7404Google Scholar
  36. Khan GMA, Yilmaz ND, Yilmaz K (2016a) Okra bast fiber as potential reinforcement element of biocomposites: can it be the flax of the future? In: Thakur VK (ed) Handbook of composite from renewable materials. Wiley ScrivenerGoogle Scholar
  37. Khan GMA, Yilmaz ND, Yilmaz K (2016b) Recent developments in design and manufacturing of biocomposites of Bombyx mori silk fibroin. In: Handbook of composites from renewable materials. Wiley ScrivenerGoogle Scholar
  38. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44:120–127. doi: 10.1016/j.compositesb.2012.07.004 CrossRefGoogle Scholar
  39. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873. doi: 10.1016/j.compositesb.2011.01.010 CrossRefGoogle Scholar
  40. Lee S-H, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf 37:80–91. doi: 10.1016/j.compositesa.2005.04.015 CrossRefGoogle Scholar
  41. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi: 10.1016/j.ultsonch.2011.11.007 CrossRefGoogle Scholar
  42. Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767. doi: 10.1016/j.indcrop.2013.06.012 CrossRefGoogle Scholar
  43. Mir SS, Hasan SMN, Hossain MJ, Hasan M (2012) Chemical modification effect on the mechanical properties of coir fiber. Eng J 16:73–83. doi: 10.4186/ej.2012.16.2.73 CrossRefGoogle Scholar
  44. Mohanty JR, Das SN, Das HC, Swain SK (2013) Effective mechanical properties of polyvinylalcohol biocomposites with reinforcement of date palm leaf fibers. Polym Compos 34:959–966. doi: 10.1002/pc.22502 CrossRefGoogle Scholar
  45. Moniruzzaman M, Maniruzzaman M, Gafur MA, Santulli C (2009) Lady’s finger fibres for possible use as a reinforcement in composite materials. J Biobased Mater Bioenergy 3:286–290CrossRefGoogle Scholar
  46. Munoz E, Garcia-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:390275. doi: 10.1155/2015/390275 CrossRefGoogle Scholar
  47. Müssig J, Schmehl M, von Buttlar H-B, Schönfeld U, Arndt K (2006) Exterior components based on renewable resources produced with SMC technology—considering a bus component as example. Ind Crops Prod 24:132–145. doi: 10.1016/j.indcrop.2006.03.006 CrossRefGoogle Scholar
  48. Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324. doi: 10.1016/S0266-3538(03)00103-9 CrossRefGoogle Scholar
  49. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. doi: 10.1016/j.compositesa.2015.08.038 CrossRefGoogle Scholar
  50. Puglia D, Biagiotti J, Kenny J (2004) A review on natural fibre-based composites—part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibers 1:23–65. doi: 10.1300/J395v01n03_03 CrossRefGoogle Scholar
  51. Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. doi: 10.1002/app.30116 CrossRefGoogle Scholar
  52. Raghavendra S, Shetty PB, Mukunda PG (2013) Mechanical properties of short banana fiber reinforced natural rubber composites. Res Rev: J Mater Sci 2:1652–1655Google Scholar
  53. Rashid B, Leman Z, Jawaid M, Ghazali MJ, Ishak MR (2016) Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatmentGoogle Scholar
  54. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447. doi: 10.1016/S0266-3538(01)00046-X CrossRefGoogle Scholar
  55. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R, Rajini N (2013) Characterization of natural fiber and composites—a review. J Reinf Plast Compos 32:1457–1476. doi: 10.1177/0731684413495322 CrossRefGoogle Scholar
  56. Srinivasababu N (2015) An overview of okra fibre reinforced polymer composites. IOP Conf Ser Mater Sci Eng 83:012003. doi: 10.1088/1757-899X/83/1/012003 CrossRefGoogle Scholar
  57. Srinivasababu N, Rao KMM (2009) Tensile properties characterization of okra woven fiber reinforced polyester composites. Int J Eng 3:403–412Google Scholar
  58. Sule U (2014) Studies on the properties of short okra/glass fibers reinforce depoxy hybrid composites. Int J Sci Technoledge 2:260–265Google Scholar
  59. Wan WK, Hutter JL, Milton L, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Cellulose nanocomposites. American Chemical Society, pp 15–221Google Scholar
  60. Wang L, Han G, Zhang Y (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69:391–397CrossRefGoogle Scholar
  61. Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317. doi: 10.1016/j.compositesb.2013.08.014 CrossRefGoogle Scholar
  62. Yilmaz ND (2013) Effect of chemical extraction parameters on corn husk fibres characteristics. Indian J Fibre Text Res 38:29–34Google Scholar
  63. Yilmaz ND (2014) Agro-residual fibers as potential reinforcement elements for biocomposites. In: Vijay Kumar T (ed) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley-Scrivener, New York, pp 231–270Google Scholar
  64. Yilmaz ND (2015) Agro-residual fibers as potential reinforcement elements for biocomposites. In: Thakur VK (ed) Lignocellulosic polymer composites: processing Characterization and Properties. Wiley Scrivener, New York, pp 233–270Google Scholar
  65. Yilmaz ND (2016) Design of acoustic textiles: environmental challenges and opportunities for future direction. In: Nayak R, Padhye R (eds) Textiles for acoustic applications. SpringerGoogle Scholar
  66. Yilmaz ND, Powell NB (2015) Biocomposite structures as noise control elements. In: Thakur VK, Kessler M (eds) Green biorenewable biocomposites: from knowledge to industrial applications. Apple Academic Press—CRC Press, p 405Google Scholar
  67. Yilmaz ND, Michielsen S, Banks-Lee P, Powell NB (2012) Effects of material and treatment parameters on noise-control performance of compressed three-layered multifiber needle-punched nonwovens. J Appl Polym Sci 123:2095–2106CrossRefGoogle Scholar
  68. Yilmaz ND, Powell NB, Banks-Lee P, Michielsen S (2013) Multi-fiber needle-punched nonwoven composites: effects of heat treatment on sound absorption performance. J Ind Text 43:231–246. doi: 10.1177/1528083712452899 CrossRefGoogle Scholar
  69. Yilmaz ND, Çalişkan E, Yilmaz K (2014a) Effect of xylanase enzyme on mechanical properties of fibres extracted from undried and dried corn husks. Indian J Fibre Text Res 39:60–64Google Scholar
  70. Yilmaz ND, Konak S, Yilmaz K (2014b) Okra bast fibers as potential reinforcement elements for biocomposites. In: 1st international conference on sustainable composite technologies. Isparta, pp 32–33Google Scholar
  71. Yilmaz ND, Koyundereli Cilgi G, Yilmaz K (2015) Natural polysaccharides as pharmaceutical excipients. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, vol 3., Biodegradable polymersWiley Scrivener, New York, pp 483–516CrossRefGoogle Scholar
  72. Yilmaz ND, Khan GMA, Yilmaz K (2016a) Biofiber reinforced acrylated epoxidized soybean oil (AESO) composites. In: Thakur VK, Thakur MK (eds) Handbook of composites from renewable materials. Wiley ScrivenerGoogle Scholar
  73. Yilmaz ND, Konak S, Yilmaz K, Kartal AA, Kayahan E (2016b) Characterization, modification and use of biomass: okra fibers. Bioinspired Biomim Nanobiomaterials. doi: 10.1680/jbibn.15.00014 Google Scholar
  74. Yu H, Yu C (2010) Influence of various retting methods on properties of kenaf fiber. J Text Inst 101:452–456. doi: 10.1080/00405000802472564 CrossRefGoogle Scholar
  75. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci Manuf 41:499–505. doi: 10.1016/j.compositesa.2009.12.006 CrossRefGoogle Scholar
  76. Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15:1032–1040. doi: 10.1016/j.jclepro.2006.05.036

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gazi Md Arifuzzaman Khan
    • 1
    Email author
  • Nazire Deniz Yilmaz
    • 2
  • Kenan Yilmaz
    • 2
  1. 1.Department of Applied Chemistry and Chemical EngineeringIslamic UniversityKushtiaBangladesh
  2. 2.Department of Textile EngineeringPamukkale UniversityDenizliTurkey

Personalised recommendations