Skip to main content

Population-Based Heuristics

  • Chapter
  • First Online:
Heuristic Search
  • 1345 Accesses

Abstract

In this chapter, I present those methods that generate a set of solutions from one iteration (known as generation) to the next instead of one only solution at a time. I give an overview of the most commonly used approaches in this particular class. These include genetic algorithms, harmony search, scatter search, differential evolution, ant systems, bees algorithm and particle swarm. The first four can be categorised under evolutionary computing, whereas the other three under swarm intelligence. For completeness, I also briefly mention other ones such as path relinking, heuristic cross-entropy, artificial immune systems, plant propagation and the psycho-clonal algorithm. Note that some of these heuristics can also be considered under the previous class, but to emphasise the power of having multiple solutions simultaneously, these are conveniently categorised under this class instead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alp, O., Erkut, E., & Drezner, Z. (2003). An efficient genetic algorithm for the p-median problem. Annals of Operations Research, 122, 21–42.

    Article  Google Scholar 

  • Bakhouya, M., & Gaber, J. (2007). An Immune inspired-based optimisation algorithm: Application to the travelling salesman problem. Advanced Modeling and Optimization, 9, 105–116.

    Google Scholar 

  • Bullnheimer, B., Harlt, R., & Strauss, C. (1998). Applying ant systems to the vehicle routing problem. In S. Voss, S. Martello, I. H. Osman, & C. Roucairol (Eds.), Metaheuristics: Advances and trends in local search paradigms for optimization (pp. 285–296). Boston: Kluwer.

    Google Scholar 

  • Caserta, M., & Quinonez Rico, E. (2009). A cross entropy-based metaheuristic algorithm for large scale capacitated facility location problems. The Journal of the Operational Research Society, 60, 1439–1448.

    Article  Google Scholar 

  • de Castro, L. N., & Timmis, J. (2002). Artificial immune systems: A New Computational Intelligent Approach. London:Springer.

    Google Scholar 

  • Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by Ant Colonies. In F. Varela & P. Bourgine (Eds.), Proceedings of the European conference on artificial life (pp. 457–474). Amsterdam: Elsevier Publishing.

    Google Scholar 

  • Daneubourg, J. L., Aron, A., Goss, S., & Pasteels, J. M. (1990). The self organising exploratory pattern of the argentine ant. Journal of Insect Behavior, 3, 159–168.

    Article  Google Scholar 

  • Das, S., Abraham, A., Chakraborty, U. K., & Konar, A. (2009). Differential evolution with a neighbourhood-based mutation operator. IEEE Transactions on Evolutionary Computation, 13, 526–553.

    Article  Google Scholar 

  • Dasgupta, D. (Ed.). (1999). Artificial immune system and their applications. Berlin/New York: Springer.

    Google Scholar 

  • De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan, Ann Arbor.

    Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1, 53–66.

    Article  Google Scholar 

  • Dorigi, M., & Stutzle, T. (2010). Ant colony optimization: Overview and recent advances. In M. Gendreau & J. Y. Potvin (Eds.), Handbook of metaheuristics (2nd ed., pp. 227–264). London: Springer.

    Chapter  Google Scholar 

  • Dorigo, M., Caro, G., & Gambardella, L. (1999). Ant algorithms for discrete optimization. Art Life, 5, 137–172.

    Article  Google Scholar 

  • Fletcher, R. (1987). Practical methods of optimisation (2nd ed.). Chichester: Wiley, 2001 reprint.

    Google Scholar 

  • Garcia-Villoria, A., & Pastor, R. (2009). Introducing dynamic diversity into a discrete particle swarm optimization. Computers and Operations Research, 36, 951–966.

    Article  Google Scholar 

  • Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.

    Article  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer.

    Book  Google Scholar 

  • Glover, F., Laguna, M., & Marti, R. (2003). Scatter search and path relinking: Advances and applications. In F. Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 1–35). London: Kluwer.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithm in search, optimization and machine learning. New York: Addison-Wesley.

    Google Scholar 

  • Goldberg, D. E., & Lingle, R. (1975). Alleles, loci and the travelling salesman problem. In J. J. Grefenstette (Ed.), Proceedings of an international conference on genetic algorithms and their applications (pp. 154–159). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gomez, A., Amran, I., & Salhi, S. (2013). Solution of classical transport problems with bee algorithms. International Journal of Logistics Systems and Management, 15, 160–170.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Harbor: University of Michigan Press.

    Google Scholar 

  • Ishida, Y., Hirayama, H., Fujita, H., Ishiguro, A., & Mori, K. (Eds.) (1998). Immunity-based systems-intelligent systems by artificial immune systems. Tokyo: Corona Pub. Co.

    Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Computer Engineering Department, Erciyes University.

    Google Scholar 

  • Kennedy, J., & Eberhault, R. C. (1995). Particle swarm optimization. IEEE international conference on neural networks, Perth, pp. 1942–1948.

    Google Scholar 

  • Lu, H., & Chen, W. (2006). Dynamic-objective particle swarm optimization for constrained optimization problems. Journal of Combinatorial Optimization, 12, 408–419.

    Article  Google Scholar 

  • Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188, 1567–1579.

    Article  Google Scholar 

  • Marti, R., Laguna, M., & Glover, F. (2006). Principles of scatter search. European Journal of Operational Research, 169, 359–372.

    Article  Google Scholar 

  • Maslow, A. H. (1954). Motivation and personality. New York: Harper & Sons.

    Google Scholar 

  • Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: A survey and experimental analysis. Artificial Intelligence Review, 33, 61–106.

    Article  Google Scholar 

  • Pan, Q. K., Suganthan, P. N., Tasgetiren, M. F., & Liang, J. J. (2010). A self-adaptive global best harmony search algorithm for continuous optimization problems. Applied Mathematics and Computation, 216, 830–848.

    Article  Google Scholar 

  • Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm, a novel rool for complex optimisation problems. In Proceedings of the 2nd virtual international conference on intelligent production machines and systems, Elsevier, pp. 454–459.

    Google Scholar 

  • Resende, M. G. C., & Ribiero, C. G. (2005). Scatter search and path-relinking: Fundamentals, advances, and applications. In M. Gendreau & J. Y. Potvin (Eds.), Handbook of metaheuristics (2nd ed., pp. 87–107). London: Springer.

    Google Scholar 

  • Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. European Journal of Operational Research, 99, 89–112.

    Article  Google Scholar 

  • Rubinstein, R. Y., & Kroese, D. P. (2004). The cross-entropy method: A unified approach to combinatorial optimization, Monte Carlo simulation and machine learning. New York: Springer.

    Book  Google Scholar 

  • Salhi, A., & Fraga, E. S. (2011). Nature-inspired optimisation approaches and the new plant propagation algorithm. In Proceedings of the ICeMATH2011, pp. K2–1 to K2–8.

    Google Scholar 

  • Salhi, S., & Gamal, M. D. H. (2003). A genetic algorithm based approach for the uncapacitated continuous location-allocation problem. Annals of Operations Research, 123, 203–222.

    Article  Google Scholar 

  • Salhi, S., & Petch, R. (2007). A GA based heuristic for the vehicle routing problem with multiple trips. Journal of Mathematical Modelling and Algorithms, 6, 591–613.

    Article  Google Scholar 

  • Selamoglu, B. I., & Salhi, A. (2016). The plant propagation algorithm for discrete optimisation: The case of the travelling salesman problem. In X. S. Yang (Ed.), Nature-inspired computation in engineering (Studies in computational intelligence, Vol. 637, pp. 43–61). Switzerland: Springer.

    Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  Google Scholar 

  • Stützle, T., & Hoos, H. H. (2000). MAX-MIN ant system. Future Generation Computer Systems, 16, 889–914.

    Article  Google Scholar 

  • Sulaiman, M., Salhi, A., & Selamoglu, B. I. (2014). A plant propagation algorithm for constrained engineering optimisation problems. Mathematical Problems in Engineering, 2014, 1–17.

    Google Scholar 

  • Sulaiman, M., & Salhi, A. (2016). A hybridisation of runner-based and seed-based plant propagation algorithms. In X. S. Yang (Ed.), Nature-inspired computation in engineering (Studies in computational intelligence, Vol. 637, pp. 1–18). Switzerland: Springer.

    Google Scholar 

  • Szeto, W. Y., Wu, Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research, 215, 126–135.

    Article  Google Scholar 

  • Tarantilis, C. D., & Kiranoudis, C. T. (2002). BoneRoute: An adaptive memory-based method for effective fleet management. Annals of Operations Research, 115, 227–241.

    Article  Google Scholar 

  • Tiwari, M. K., Prakash, A., Kumar, A., & Mileham, A. R. (2005). Determination of an optimal sequence using the psychoclonal algorithm. Journal of Engineering Manufacture, 219, 137–149.

    Article  Google Scholar 

  • Wade, A. C., & Salhi, S. (2003). An ant system algorithm for the mixed vehicle routing problem with backhauls. In M. G. Resende & J. P. de Sousa (Eds.), Metaheuristics: Computer decision-making (pp. 699–719). New York: Kluwer.

    Chapter  Google Scholar 

  • Wedde, H. F., Farooq, M., & Zhang, Y. (2004). BeeHive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In Ant colony optimization and swarm intelligence (Lecture notes in computer science, Vol. 3172, pp. 83–94). Berlin: Springer.

    Chapter  Google Scholar 

  • Yang, X.-S. (2005). Engineering optimizations via nature-inspired virtual bee algorithms. In J. Mira & J. R. Alvarez (Eds.), IWINAC 2005 (Lecture notes in computer science, Vol. 3562, pp. 317–323). Berlin/Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Salhi, S. (2017). Population-Based Heuristics. In: Heuristic Search. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-49355-8_4

Download citation

Publish with us

Policies and ethics