Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Studies on petroleomics have been focused on advanced molecular-level characterization of compounds that could not be analyzed by conventional techniques. The next stage of the development would be more discussions on the information obtained and relationships with the properties and functions. The relationship between molecular composition and bulk properties or functions can be explicitly expressed by petroinformatics, which utilizes statistics, mathematics, and computational visualization technology to interpret or correlate analytical results with bulk properties and experimental data. This provides explicit or implicit information for underlying science and engineering.

In this chapter, several examples of petroinformatics are presented. Statistical methods, such as principle component analysis (GlossaryTerm

PCA

) for dimensionality reduction in multivariate analysis, and hierarchical clustering analysis (GlossaryTerm

HCA

), have been applied to interpret complex petroleum mass spectra obtained by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (GlossaryTerm

FT-ICR MS

). The mass spectral peaks were statistically analyzed by Spearman's rank correlation, and by correlation diagrams showing relationships between composition and bulk properties. Additionally, the chapter demonstrates quantitative analyses for petroleum samples by PCA for multivariate analysis and t-tests for univariate analysis. Volcano plots are utilized to visualize the quantitative change or difference between samples in detail.

The software platform, which integrates data from many samples obtained from different analytical instruments, is a very important tool to achieve more comprehensive understanding of complex analytes such as crude oils. The learnings from other research fields, such as metabolomics, genomics, and proteomics, are important and valuable for the next steps of petroinformatics development, i. e., standardization of data and retrieval of its metadata information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Watt, S.G. Roussis: Crude assay. In: Analytical Advances for Hydrocarbon Research, ed. by C.S. Hsu (Kluwer, New York 2003)

    Google Scholar 

  2. R.W. Kiser: Introduction to Mass Spectrometry and Its Applications (Prentice Hall, Englewood Cliff 1965)

    Google Scholar 

  3. A. Mendex, J. Bruzual: Molecular characterization of petroleum and its fractions by mass spectrometry. In: Analytical Advances for Hydrocarbon Research, ed. by C.S. Hsu (Kluwer, New York 2003)

    Google Scholar 

  4. C.S. Hsu: Analytical Advances for Hydrocarbon Research (Kluwer, New York 2003)

    Book  Google Scholar 

  5. F.P. Di Sanzo: Chromatographic analyses of fuels. In: Analytical Advances for Hydrocarbon Research, ed. by C.S. Hsu (Kluwer, New York 2003)

    Google Scholar 

  6. P.C. Anderson, J.M. Sharkey, R.P. Walsh: Calaculation of research octane number of motor gasoline from chromatographic data and a new approach to motor gasoline quality control, J. Inst. Pet. 59, 83 (1972)

    Google Scholar 

  7. C.S. Hsu, D. Drinkwater: GC/MS in the petroleum industry. In: Current Practice in GC/MS, Chromatographic Science, Vol. 86, ed. by W.W.A. Niessen (Dekker Marcel, New York 2001)

    Google Scholar 

  8. A.G. Marshall, R.P. Rodgers: Petroleomics: The next grand challenge for chemical analysis, Acc. Chem. Res. 37, 53–59 (2004)

    Article  CAS  Google Scholar 

  9. O.C. Mullins, R.P. Rodgers, P. Weinheber, C.C. Klein, L. Wenkartaramanan, A.B. Andrews, A.G. Marshall: Oil reservoir characterization via crude oil analysis by downhole fluid analysis in oil wells with visible-near-infrared spectroscopy and by laboratory analysis with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 20(6), 2448–2456 (2006)

    Article  CAS  Google Scholar 

  10. A.G. Marshall, R.P. Rodgers: Petroleomics: Chemistry of the underworld, Proc. Natl. Acad. Sci. USA 105(47), 18090–18095 (2008)

    Article  CAS  Google Scholar 

  11. M.P. Barrow: Petroleomics: Study of the old and the new, Biofuels 1(5), 651–655 (2010)

    Article  CAS  Google Scholar 

  12. A. Islam, Y. Cho, A. Ahmed, S. Kim: Data interpretation methods for petroleomics, Mass Spectrom. Lett. 3(3), 63067 (2010)

    Google Scholar 

  13. Y. Cho, A. Ahmed, A. Islam, S. Kim: Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics, Mass Spectrom. Rev. 34(2), 248–263 (2015)

    Article  CAS  Google Scholar 

  14. C.S. Hsu: Petroleomics: Probing petroleum composition by mass spectrometry. In: Proc. 2003 Pittsburgh Conf., Orlando (2003)

    Google Scholar 

  15. C.S. Hsu, C.L. Hendrickson, R.P. Rodgers, A.M. McKenna, A.G. Marshall: Petroleomics: Advanced molecular probe for petroleum heavy ends, J. Mass Spectrom. 46, 337–343 (2011)

    Article  CAS  Google Scholar 

  16. C.S. Hsu, Z. Liang, J.E. Campana: Hydrocarbon characterization by ultra-high resolution Fourier-transform ion cyclotron resonance mass spectrometry, Anal. Chem. 66, 850–855 (1994)

    Article  CAS  Google Scholar 

  17. C.A. Hughey, C.L. Hendrickson, R.P. Rodgers, A.G. Marshall: Elemental composition analysis of processed and unprocessed diesel fuel by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 15(5), 1186–1193 (2001)

    Article  CAS  Google Scholar 

  18. K. Qian, W.K. Robbins, C.A. Hughey, H.J. Cooper, R.P. Rodgers, A.G. Marshall: Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 15(6), 1505–1511 (2001)

    Article  CAS  Google Scholar 

  19. G.C. Klein, S. Kim, R.P. Rodgers, A.G. Marshall, A. Yen: Mass spectral analysis of asphaltenes. II. Detailed compositional comparison of asphaltenes deposit to its crude oil counterpart for two geographically different crude oils by ESI FT-ICR MS, Energy Fuels 20(5), 1973–1979 (2006)

    Article  CAS  Google Scholar 

  20. L.A. Stanford, S. Kim, R.P. Rodgers, A.G. Marshall: Characterization of compositional changes in vacuum gas oil distillation cuts by electrospray ionization Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry, Energy Fuels 20(6), 1664–1673 (2006)

    Article  CAS  Google Scholar 

  21. L.A. Stanford, S. Kim, G.C. Klein, D.F. Smith, R.P. Rodgers, A.G. Marshall: Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol. 41(8), 2696–2702 (2007)

    Article  CAS  Google Scholar 

  22. S. Kim, R.P. Rodgers, G.T. Blakney, C.L. Hendrickson, A.G. Marshall: Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis, J. Am. Soc. Mass Spectrom. 20(2), 263–268 (2009)

    Article  CAS  Google Scholar 

  23. Q. Shi, C. Xu, S. Zhao, K.H. Chung, Y. Zhang, W. Gao: Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 24(1), 563–569 (2009)

    Article  CAS  Google Scholar 

  24. P. Liu, Q. Shi, K.H. Chung, Y.H. Zhang, N. Pan, S. Zhao, C. Xu: Molecular characterization of sulfur compounds in venezuela crude oil and its SARA fractions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 24, 5089–5096 (2010)

    Article  CAS  Google Scholar 

  25. S.K. Panda, K.-J. Brockmann, T. Benter, W. Schrader: Atmospheric pressure laser ionization (APLI) coupled with Fourier transform ion cyclotron resonance mass spectrometry applied to petroleum samples analysis: Comparison with electrospray ionization and atmospheric pressure photoionization methods, Rapid Commun. Mass Spectrom. 25(16), 2317–2326 (2011)

    Article  CAS  Google Scholar 

  26. X. Zhou, Q. Shi, Y. Zhang, S. Zhao, R. Zhang, K.H. Chung, C. Xu: Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem. 84(7), 3192–3199 (2012)

    Article  CAS  Google Scholar 

  27. J.M. Purcell, C.L. Hendrickson, R.P. Rodgers, A.G. Marshall: Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis, Anal. Chem. 78(16), 5906–5912 (2006)

    Article  CAS  Google Scholar 

  28. K. Qian, A.S. Mennito, K.E. Edwards, D.T. Ferrughelli: Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass Spectrom. 22(14), 2153–2160 (2008)

    Article  CAS  Google Scholar 

  29. A.M. McKenna, J.M. Purcell, R.P. Rodgers, A.G. Marshall: Heavy petroleum composition. 1. Exhaustive compositional analysis of Athabasca bitumen HVGO distillates by Fourier transform ion cyclotron resonance mass spectrometry: A definitive test of the Boduszynski model, Energy Fuels 24, 2929–2938 (2010)

    Article  CAS  Google Scholar 

  30. K. Qian, K.E. Edwards, A.S. Mennito, C.C. Walters, J.D. Kushnerick: Enrichment, resolution, and identification of nickel porphyrins in petroleum asphaltene by cyclograph separation and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem. 82(1), 413–419 (2010)

    Article  CAS  Google Scholar 

  31. Y. Cho, A. Islam, A. Ahmed, S. Kim: Application of comprehensive 2D GC-MS and APPI FT-ICR MS for more complete understanding of chemicals in diesel fuel, Mass Spectrom. Lett. 3(2), 43 (2012)

    Article  CAS  Google Scholar 

  32. J.M. Jin, S. Kim, J.E. Birdwell: Molecular characterization and comparison of shale oils generated by different pyrolysis methods, Energy Fuels 26(2), 1054–1062 (2012)

    Article  CAS  Google Scholar 

  33. H. Muller, F.M. Adam, S.K. Panda, H.H. Al-Jawad, A.A. Al-Hajji: Evaluation of quantitative sulfur speciation in gas oils by Fourier transform ion cyclotron resonance mass spectrometry: Validation by comprehensive two-dimensional gas chromatography, J. Am. Soc. Mass Spectrom. 23(5), 806–815 (2012)

    Article  CAS  Google Scholar 

  34. A. Sim, Y. Cho, D. Kim, M. Witt, J.E. Birdwell, B.J. Kim, S. Kim: Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry, Fuel 140, 717–723 (2015)

    Article  CAS  Google Scholar 

  35. B.M. Kolakowski, J.S. Grossert, L. Ramaley: The importance of both charge exchange and proton transfer in the analysis of polycyclic aromatic compounds using atmospheric pressure chemical ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 15(3), 301–310 (2004)

    Article  CAS  Google Scholar 

  36. D. Borton, D.S. Pinkston, M.R. Hurt, X. Tan, K. Azyat, A. Scherer, R. Tykwinski, M. Gray, K. Qian, H.I. Kenttämaa: Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry, Energy Fuels 24(10), 5548–5559 (2010)

    Article  CAS  Google Scholar 

  37. Y.H. Kim, S. Kim: Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene, J. Am. Soc. Mass Spectrom. 21(3), 386–392 (2010)

    Article  CAS  Google Scholar 

  38. A.S. Mennito, K. Qian: Characterization of heavy petroleum saturates by laser desorption silver cationization and Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 27(12), 7348–7353 (2013)

    Article  CAS  Google Scholar 

  39. E. Lorente, C. Berrueco, A.A. Herod, M. Millan, R. Kandiyoti: The detection of high-mass aliphatics in petroleum by matrix-assisted laser desorption/ionisation mass spectrometry, Rapid Commun. Mass Spectrom. 26(14), 1581–1590 (2012)

    Article  CAS  Google Scholar 

  40. Y. Cho, M. Witt, Y.H. Kim, S. Kim: Characterization of crude oils at the molecular level by use of laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry, Anal. Chem. 84(20), 8587–8594 (2012)

    Article  CAS  Google Scholar 

  41. Y. Cho, J.M. Jin, M. Witt, J.E. Birdwell, J.G. Na, N.S. Roh, S. Kim: Comparing laser desorption ionization and atmospheric pressure photoionization coupled to Fourier transform ion cyclotron resonance mass spectrometry to characterize shale oils at the molecular level, Energy Fuels 27(4), 1830–1837 (2013)

    Article  CAS  Google Scholar 

  42. Y. Cho, M. Witt, J.M. Jin, Y.H. Kim, N.S. Nho, S. Kim: Evaluation of laser desorption ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry to study metalloporphyrin complexes, Energy Fuels 28(11), 6699–6706 (2014)

    Article  CAS  Google Scholar 

  43. E. Kendrick: A mass scale based on CH2 1/4 14.0000 for high resolution mass spectrometry of organic compounds, Anal. Chem. 35, 2146–2154 (1963)

    Article  CAS  Google Scholar 

  44. C.S. Hsu, K. Qian, Y.C. Chen: An innovative approach to data analysis in hydrocarbon characterization by on line liquid chromatography mass spectrometry, Anal. Chim. Acta 264, 79–89 (1992)

    Article  CAS  Google Scholar 

  45. C.A. Hughey, C.L. Hendrickson, R.P. Rodgers, A.G. Marshall: Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra, Anal. Chem. 73, 4676–4681 (2001)

    Article  CAS  Google Scholar 

  46. P.J. Roach, J. Laskin, A. Laskin: Higher-order mass defect analysis for mass spectra of complex organic mixtures, Anal. Chem. 83(12), 4924–4929 (2011)

    Article  CAS  Google Scholar 

  47. D. van Krevelen: Graphical-statistical method for the study of structure and reaction processes of coal, Fuel 29, 269–284 (1950)

    Google Scholar 

  48. S. Kim, R.W. Kramer, P.G. Hatcher: Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram, Anal. Chem. 75(20), 5336–5344 (2003)

    Article  CAS  Google Scholar 

  49. Z. Wu, R. Rodgers, A. Marshall: Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements, Anal. Chem. 76, 2511–2516 (2004)

    Article  CAS  Google Scholar 

  50. Y. Cho, Y.H. Kim, S. Kim: Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem. 83(15), 6068–6073 (2011)

    Article  CAS  Google Scholar 

  51. C.S. Hsu, V.V. Lobodin, R.P. Rodgers, A.M. McKenna, A.G. Marshall: Compositional boundaries for fossil hydrocarbons, Energy Fuels 25(5), 2174–2178 (2011)

    Article  CAS  Google Scholar 

  52. V.V. Lobodin, A.G. Marshall, C.S. Hsu: Compositional space boundaries for organic compounds, Anal. Chem. 84(7), 3410–3416 (2012)

    Article  CAS  Google Scholar 

  53. H.P. Nguyen, I.P. Ortiz, C. Temiyasathit, S.B. Kim, K.A. Schug: Laser desorption/ionization mass spectrometry fingerprinting of complex hydrocarbon mixtures: Application to crude oils using data mining techniques, Rapid Commun. Mass Spectrom. 22(14), 2220–2226 (2008)

    Article  CAS  Google Scholar 

  54. A. Smaniotto, L. Montanari, C. Flego, A. Rizzi, E. Ragazzi, R. Seraglia, P. Traldi: Can crude oils be distinguished by different component distribution obtained by laser desorption ionization mass spectrometry and evaluated by chemometrics?, Rapid Commun. Mass Spectrom. 22(10), 1597–1606 (2008)

    Article  CAS  Google Scholar 

  55. M. Hur, I. Yeo, E. Park, Y.H. Kim, J. Yoo, E. Kim, M.H. No, J. Koh, S. Kim: Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples, Anal. Chem. 82(1), 211–218 (2010)

    Article  CAS  Google Scholar 

  56. M. Hur, I. Yeo, E. Kim, M.H. No, J. Koh, Y.J. Cho, J.W. Lee, S. Kim: Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils, Energy Fuels 24, 5524–5532 (2010)

    Article  CAS  Google Scholar 

  57. Y.E. Corilo, D.C. Podgorski, A.M. McKenna, K.L. Lemkau, C.M. Reddy, A.G. Marshall, R.P. Rodgers: Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra, Anal. Chem. 85(19), 9064–9069 (2013)

    Article  CAS  Google Scholar 

  58. B.G. Vaz, R.C. Silva, C.F. Klitzke, R.C. Simas, H.D.L. Nascimento, R.C.L. Pereira, D.F. Garcia, M.N. Eberlin, D.A. Azevedo: Assessing biodegradation in the Llanos Orientales crude oils by electrospray ionization ultrahigh resolution and accuracy Fourier transform mass spectrometry and chemometric analysis, Energy Fuels 27(3), 1277–1284 (2013)

    Article  CAS  Google Scholar 

  59. S. Albisinni, C. De Nunzio, A. Tubaro, W.T. Barry, L.L. Banez, S.J. Freedland: Greater percent-free testosterone is associated with high-grade prostate cancer in men undergoing prostate biopsy, Urology 80(1), 162–167 (2012)

    Article  Google Scholar 

  60. I. Yeo, J.W. Lee, S. Kim: Application of clustering methods for interpretation of petroleum spectra from negative-mode ESI FT-ICR MS, Bull. Korean Chem. Soc. 31(11), 3151–3155 (2010)

    Article  CAS  Google Scholar 

  61. C.S. Hsu, C.C. Walters, G.H. Isaksen, M.E. Schaps, K.E. Peters: Biomarker analysis for petroleum exploration. In: Analytical Advances for Hydrocarbon Research, ed. by C.S. Hsu (Kluwer, New York 2003)

    Chapter  Google Scholar 

  62. Y. Cho, A. Ahmed, S. Kim: Application of atmospheric pressure photo ionization hydrogen/deuterium exchange high-resolution mass spectrometry for the molecular level speciation of nitrogen compounds in heavy crude oils, Anal. Chem. 85(20), 9758–9763 (2013)

    Article  CAS  Google Scholar 

  63. A. Ahmed, S. Kim: Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry – A method to differentiate isomers by mass spectrometry, J. Am. Soc. Mass Spectrom. 24(12), 1900–1905 (2013)

    Article  CAS  Google Scholar 

  64. T. Acter, Y. Cho, S. Kim, A. Ahmed, B. Kim, S. Kim: Optimization and application of APCI hydrogen–deuterium exchange mass spectrometry (HDX MS) for the speciation of nitrogen compounds, J. Am. Soc. Mass Spectrom. 26(9), 1522–1531 (2015)

    Article  CAS  Google Scholar 

  65. T. Acter, D. Kim, A. Ahmed, J.M. Jin, U.H. Yim, W.J. Shim, S. Kim: Optimization and application of atmospheric pressure chemical and photoionization hydrogen–deuterium exchange mass spectrometry for speciation of oxygen-containing compounds, Anal. Bioanal. Chem. 408(12), 3281–3293 (2016)

    Article  CAS  Google Scholar 

  66. S. Kim, M. Hur: In paving the way for understanding and predicting properties of crude oil based on molecular level information and statistical analysis: Petroinformatics. In: Proc. PacifiChem, Honolulu (2010)

    Google Scholar 

  67. M. Hur, H.B. Oh, S. Kim: Optimized automatic noise level calculations for broadband FT-ICR mass spectra of petroleum give more reliable and faster peak picking results, Bull. Korean Chem. Soc. 30(11), 2665–2668 (2009)

    Article  CAS  Google Scholar 

  68. R. Pedreschi, M.L. Hertog, S.C. Carpentier, J. Lammertyn, J. Robben, J.P. Noben, B. Panis, R. Swennen, B.M. Nicolai: Treatment of missing values for multivariate statistical analysis of gel-based proteomics data, Proteomics 8(7), 1371–1383 (2008)

    Article  CAS  Google Scholar 

  69. R.A. Johnson, D.W. Wichern: Applied Multivariate Statistical Analysis (Prentice Hall, Upper Saddle River 2007) p. 773

    Google Scholar 

  70. T.W. Anderson: An Introduction to Multivariate Statistical Analysis (Wiley, New York 1958)

    Google Scholar 

  71. N.C. Giri: Multivariate Statistical Analysis (Marcel Dekker, New York 1996)

    Google Scholar 

  72. H. Joe, J. Ward: Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  Google Scholar 

  73. M.G. Kendall: A new measure of rank correlation, Biometrika 30, 81–93 (1938)

    Article  Google Scholar 

  74. A.J.G. Barwise: Role of nickel and vanadium in petroleum classification, Energy Fuels 4(6), 647–652 (1990)

    Article  CAS  Google Scholar 

  75. M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, M.A. Marra: Circos: An information aesthetic for comparative genomics, Genome Res 19(9), 1639–1645 (2009)

    Article  CAS  Google Scholar 

  76. C. Spearman: The proof and measurement of association between two things, Am. J. Psychol. 15(1), 72–101 (1904)

    Article  Google Scholar 

  77. J.S. Maritz: Distribution-Free Statistical Methods (Chapman Hall, New York 1981)

    Book  Google Scholar 

  78. ASTM International: D5708-12 standard test methods for determination of nickel, vanadium, and iron in crude oils and residual fuels by inductively coupled plasma (ICP) atomic emission spectrometry. In: Annual Book of ASTM Standards: Petroleum Products and Lubricants (II), Vol. 05(02) (ASTM, West Conshohocken 2014)

    Google Scholar 

  79. ASTM International: ASTM D974-08e1 standard test method for acid and base number by color-indicator titration. In: Annual Book of ASTM Standards (ASTM, West Conshohocken 2008)

    Google Scholar 

  80. M. Witt, W. Timm: Determination of simulated crude oil mixtures from the north sea using atmospheric pressure photoionization coupled to Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuels 30, 3707–3713 (2016)

    Article  CAS  Google Scholar 

  81. B.M. Bennett: Note on power transformations which minimize skewness, Biom. Z. 9(2), 73 (1967)

    Article  Google Scholar 

  82. L. Ting, M.J. Cowley, S.L. Hoon, M. Guilhaus, M.J. Raftery, R. Cavicchioli: Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling, Mol. Cell. Proteom. 8(10), 2227–2242 (2009)

    Article  CAS  Google Scholar 

  83. X.Q. Cui, G.A. Churchill: Statistical tests for differential expression in cDNA microarray experiments, Genome Biol 4(4), 210 (2003)

    Article  Google Scholar 

  84. W.T. Li: Volcano plots in analyzing differential expressions with mrna microarrays, J. Bioinf. Comput. Biol. 10(6), 1231003 (2012)

    Article  Google Scholar 

  85. M. Hur, Y. Cho, S. Kim, E.S. Wurtele: An approach to analysis and visualization of crude oil samples. In: Proc. 61st ASMS Conf. Mass Spectrom. Allied Topics, Minneapolis (2013)

    Google Scholar 

  86. M. Hur, A.A. Campbell, M. Almeida-de-Macedo, L. Li, N. Ransom, A. Jose, M. Crispin, B.J. Nikolauh, E.S. Wurtele: A global approach to analysis and interpretation of metabolic data for plant natural product discovery, Nat. Prod. Rep. 30(4), 565–583 (2013)

    Article  CAS  Google Scholar 

  87. M. Hur: MzCruiser software (iMass Consulting, South Korea 2010), https://github.com/mhhur/PetroInformatics

    Google Scholar 

  88. R.L. Sleighter, Z.F. Lie, J.H. Xue, P.G. Hatcher: Multivariate statistical approaches for the characterization of dissolved organic matter analyzed by ultrahigh resolution mass spectrometry, Environ. Sci. Technol. 44(19), 7576–7582 (2010)

    Article  CAS  Google Scholar 

  89. R.L. Sleighter, R.M. Cory, L.A. Kaplan, H.A.N. Abdulla, P.G. Hatcher: A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream, J. Geophys. Res.-Biogeo. 119(8), 1520–1537 (2014)

    Article  CAS  Google Scholar 

  90. A.M. Pohlabeln, T. Dittmar: Novel insights into the molecular structure of non-volatile marine dissolved organic sulfur, Mar. Chem. 168(20), 86–94 (2015)

    Article  CAS  Google Scholar 

  91. M. Hur: Application of volcano plots for quantitative visualization and comparison of a set of two spectra obtained by high-resolution mass spectrometric analysis of crude oils. In: Proc. PacifiChem, Honolulu (2015)

    Google Scholar 

  92. M. Hur, L.R. Ware, M.A. McKenna, R.P. Rodgers, J. Park, S.E. Wurtele, S. Kim, A.G. Marshall: Statistically Significant Differences in Composition of Petroleum Crude Oils Revealed by Volcano Plots Generated from Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectra (in preparation)

    Google Scholar 

  93. Y.E. Corilo: PetroOrg Software (Florida State University, Tallahassee 2013), http://software.petroorg.com.

    Google Scholar 

  94. O. Fiehn, D. Robertson, J. Griffin, M. van der Werf, B. Nikolau, N. Morrison, L.W. Sumner, R. Goodacre, N.W. Hardy, C. Taylor, J. Fostel, B. Kristal, R. Kaddurah-Daouk, P. Mendes, B. van Ommen, J.C. Lindon, S.A. Sansone: The metabolomics standards initiative (MSI), Metabolomics 3(3), 175–178 (2007)

    Article  CAS  Google Scholar 

  95. L.W. Sumner, A. Amberg, D. Barrett, M.H. Beale, R. Beger, C.A. Daykin, T.W.M. Fan, O. Fiehn, R. Goodacre, J.L. Griffin, T. Hankemeier, N. Hardy, J. Harnly, R. Higashi, J. Kopka, A.N. Lane, J.C. Lindon, P. Marriott, A.W. Nicholls, M.D. Reily, J.J. Thaden, M.R. Viant: Proposed minimum reporting standards for chemical analysis, Metabolomics 3(3), 211–221 (2007)

    Article  CAS  Google Scholar 

  96. J.L. Griffin, A.W. Nicholls, C.A. Daykin, S. Heald, H.C. Keun, I. Schuppe-Koistinen, J.R. Griffiths, L.L. Cheng, P. Rocca-Serra, D.V. Rubtsov, D. Robertson: Standard reporting requirements for biological samples in metabolomics experiments: mammalian/in vivo experiments, Metabolomics 3(3), 179–188 (2007)

    Article  CAS  Google Scholar 

  97. N.W. Hardy, C.F. Taylor: A roadmap for the establishment of standard data exchange structures for metabolomics, Metabolomics 3(3), 243–248 (2007)

    Article  CAS  Google Scholar 

  98. O. Fiehn, G. Wohlgemuth, M. Scholz, T. Kind, D.Y. Lee, Y. Lu, S. Moon, B. Nikolau: Quality control for plant metabolomics: reporting MSI-compliant studies, Plant J 53(4), 691–704 (2008)

    Article  CAS  Google Scholar 

  99. C. Ludwig, J.M. Easton, A. Lodi, S. Tiziani, S.E. Manzoor, A.D. Southam, J.J. Byrne, L.M. Bishop, S. He, T.N. Arvanitis, U.L. Gunther, M.R. Viant: Birmingham metabolite library: A publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR), Metabolomics 8(1), 8–18 (2012)

    Article  CAS  Google Scholar 

  100. J. Stanstrup, M. Gerlich, L.O. Dragsted, S. Neumann: Metabolite profiling and beyond: approaches for the rapid processing and annotation of human blood serum mass spectrometry data, Anal. Bioanal. Chem. 405(15), 5037–5048 (2013)

    Article  CAS  Google Scholar 

  101. K.A. Kouremenos, D.J. Beale, H. Antti, E.A. Palombo: Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida bacteria in potable water, J. Chromatogr. B 966, 179–186 (2014)

    Article  CAS  Google Scholar 

  102. S.A. Sansone, P. Rocca-Serra, D. Field, E. Maguire, C. Taylor, O. Hofmann, H. Fang, S. Neumann, W.D. Tong, L. Amaral-Zettler, K. Begley, T. Booth, L. Bougueleret, G. Burns, B. Chapman, T. Clark, L.A. Coleman, J. Copeland, S. Das, A. de Daruvar, P. de Matos, I. Dix, S. Edmunds, C.T. Evelo, M.J. Forster, P. Gaudet, J. Gilbert, C. Goble, J.L. Griffin, D. Jacob, J. Kleinjans, L. Harland, K. Haug, H. Hermjakob, S.J.H. Sui, A. Laederach, S.G. Liang, S. Marshall, A. McGrath, E. Merrill, D. Reilly, M. Roux, C.E. Shamu, C.A. Shang, C. Steinbeck, A. Trefethen, B. Williams-Jones, K. Wolstencroft, I. Xenarios, W. Hide: Toward interoperable bioscience data, Nat. Genet. 44(2), 121–126 (2012)

    Article  CAS  Google Scholar 

  103. S.A. Sansone, D. Schober, H.J. Atherton, O. Fiehn, H. Jenkins, P. Rocca-Serra, D.V. Rubtsov, I. Spasic, L. Soldatova, C. Taylor, A. Tseng, M.R. Viant: Metabolomics standards initiative: Ontology working group work in progress, Metabolomics 3(3), 249–256 (2007)

    Article  CAS  Google Scholar 

  104. D.M. Hendrickx, R.R. Boyles, J.C.S. Kleinjans, A. Dearry: Workshop report: Identifying opportunities for global integration of toxicogenomics databases, Arch. Toxicol. 8(12), 2323–2332 (2014)

    Article  CAS  Google Scholar 

  105. S.L. Seymour, T. Farrah, P.A. Binz, R.J. Chalkley, J.S. Cottrell, B.C. Searle, D.L. Tabb, J.A. Vizcaino, G. Prieto, J. Uszkoreit, M. Eisenacher, S. Martinez-Bartolome, F. Ghali, A.R. Jones: A standardized framing for reporting protein identifications in mzIdentML 1.2, Proteomics 14(21–22), 2389–2399 (2014)

    Article  CAS  Google Scholar 

  106. J. Teleman, A.W. Dowsey, F.F. Gonzalez-Galarza, S. Perkins, B. Pratt, H.L. Rost, L. Malmstrom, J. Malmstrom, A.R. Jones, E. Deutsch, F. Levander: Numerical compression schemes for proteomics mass spectrometry data, Mol. Cell Proteom. 13(6), 1537–1542 (2014)

    Article  CAS  Google Scholar 

  107. S. Orchard: Data standardization and sharing the work of the HUPO-PSI, Biochim. Biophys. Acta – Proteins Proteom. 1844(1), 82–87 (2014)

    Article  CAS  Google Scholar 

  108. Wikipedia: Platform as a service, http://en.wikipedia.org/wiki/Platform_as_a_service

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manhoi Hur or Chang Samuel Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hur, M., Kim, S., Hsu, C.S. (2017). Petroinformatics. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_4

Download citation

Publish with us

Policies and ethics