Skip to main content

Modern Approaches to Hydrotreating Catalysis

  • Chapter
Springer Handbook of Petroleum Technology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Hydrotreating plays an important role in petroleum refining . Crude oil contains contaminants  – sulfur, nitrogen , oxygen and trace elements – which must be removed to meet product specifications. Most refineries include at least three hydrotreating units for upgrading naphtha, middle distillates , gas oils, intermediate process streams, and/or residue. Hydrotreating catalysts are the core of the process.

This chapter reviews current progress in tackling the issues found in upgrading distillates and residues by hydrotreating and focuses on the chemistry of hydrodesulfurization (GlossaryTerm

HDS

), hydrodenitrogenation (GlossaryTerm

HDN

), hydrodeoxygenation (GlossaryTerm

HDO

) and hydrolytic demetalization (GlossaryTerm

HDM

). We discuss the composition and functions of hydrotreating catalysts, and we highlight areas for further improvement. The distillate molecules are accessed by gas chromatography-atomic emission detection (GlossaryTerm

GC-AED

) and gas chromatography-time of flight (GlossaryTerm

GC-TOF

) to identify and quantify all molecules in the feeds and hydrotreated products. Enhancement of reactivity and suppression of inhibition are discussed based on the molecular structure versus reactivity/inhibition correlations. A molecular approach towards the residue is progressed by applying ultrahigh-resolution Fourier-transform ion cyclotron resonance (GlossaryTerm

FT-ICR

) mass spectroscopy. Nevertheless, target molecules in resid HDS and HDN are not defined yet due to the polymeric and agglomerated nature of the molecules. Molecular images of sulfur- and nitrogen-containing species are still major targets of hydrotreating. However, porphyrinic metal compounds in the resid, even the asphaltene, can now be detected by GC-AED, gas chromatography-iconductively coupled plasma-mass spectrometry (GlossaryTerm

GC-ICP-MS

) as well as FT-ICR, indicating that the porphyrinic metal compounds can be isolated for observation from the resid and asphaltene matrix under the analytical conditions. The carbon deposit on the catalyst in the HDM is reviewed to show its important influence on capacity and distribution of metal on the catalyst. The carbon deposit is the major issue in hydrotreating. The reactivity of feed molecules for the carbon deposit includes the condensation and adsorption phase separation, which depend on reactivity and dissolution/antidissolution properties of surrounding species as well as the properties of particular molecules concerned. Further challenges in hydrotreating are also discussed concerning the issues picked up in the molecular structure reactivity/inhibition of distillates and residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Topsøe, B.S. Clausen, F.E. Massoth: Hydrotreating Catalysis (Springer, Berlin 1996)

    Book  Google Scholar 

  2. D.D. Whitehurst, T. Isoda, I. Mochida: Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds, Adv. Catal. 42, 345 (1998)

    CAS  Google Scholar 

  3. C. Song: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today 86, 211–263 (2003)

    Article  CAS  Google Scholar 

  4. I.V. Babich, J.A. Moulijn: Science and technology of novel processes for deep desulfurization of oil refinery streams: A review, Fuel 82, 607–631 (2003)

    Article  CAS  Google Scholar 

  5. M. Breysse, G. Djega-Maridassou, S. Pressayre, C. Geantet, M. Vrinat, G. Pérot, M. Lemaire: Deep desulfurization: Reactions, catalysts and technological challenges, Catal. Today 84, 129–138 (2003)

    Article  CAS  Google Scholar 

  6. I. Mochida, K.H. Choi: Practical Advanced in Petroleum Processing (Springer, New York 2006)

    Google Scholar 

  7. Criterion Catalysts and Technologies: ASCENT DC-2534: Performance that delivers great value for your investment, http://www.criterioncatalysts.com/content/dam/shell/static/criterion/downloads/pdf/ascent-dc-2534-brochure.pdf

  8. H. Topsøe, R.G. Egeberg, K.G. Knudsen: Future challenges of hydrotreating catalyst technology, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49(2), 569–560 (2004)

    Google Scholar 

  9. T. Kim, S.A. Ali, K. Alhooshani, M. Al-Yami, J.I. Park, S.H. Yoon, I. Mochida: Analysis and deep hydrodesulfurization reactivity of Saudi Arabian gas oils, J. Ind. Eng. Chem. 19, 1577–1582 (2013)

    Article  CAS  Google Scholar 

  10. B. Chawla: Selective detection of sulfur and nitrogen compounds in low boiling petroleum streams by GC chromatography. In: Analytical Advances for Hydrocarbon Research, ed. by C.S. Hsu (Kluwer/Plenum, New York 2003)

    Google Scholar 

  11. C.F. Klitzke, Y.E. Corilo, K. Siek, J. Binkley, J. Patrick, M.N. Eberlin: Petroleomics by ultrahigh-resolution time-of-flight mass spectrometry, Energ. Fuels 26, 5787–5794 (2012)

    Article  CAS  Google Scholar 

  12. J.-M. Schweitzer, C. López-García, D. Ferré: Thermal runaway analysis of a three-phase reactor for LCO hydrotreatment, Chem. Eng. Sci. 65, 313–321 (2010)

    Article  CAS  Google Scholar 

  13. L. Boursier, V. Souchon, C. Dartiguelongue, J. Ponthus, M. Courtiade, D. Thiébaut: Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography, J. Chromatogr. A 1280, 98–103 (2013)

    Article  CAS  Google Scholar 

  14. A.N. Verentchikov, M.I. Yavor, Y.I. Hasin, M.A. Gavrik: Multireflection planar time-of-flight mass analyzer. I: An analyzer for a parallel tandem spectrometer, Tech. Phys. 50, 73–81 (2005)

    Article  CAS  Google Scholar 

  15. A.N. Verentchikov, M.I. Yavor, Y.I. Hasin, M.A. Gavrik: Multireflection planar time-of-flight mass analyzer. II: The high-resolution mode, Tech. Phys. 50, 82–86 (2005)

    Article  CAS  Google Scholar 

  16. J.P. Dickie, T.F. Yen: Macrostructures of the asphaltic fractions by various instrumental methods, Anal. Chem. 39, 1847–1852 (1967)

    Article  CAS  Google Scholar 

  17. O.C. Mullins: The modified Yen model, Energ. Fuels 24, 2179–2207 (2010)

    Article  CAS  Google Scholar 

  18. G.C. Klein, S. Kim, R.P. Rodgers, A.G. Marshall: Mass spectral analysis of asphaltenes. I. compositional differences between pressure-drop and solvent-drop asphaltenes determined by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energ. Fuels 20, 1965–1972 (2006)

    Article  CAS  Google Scholar 

  19. Q. Shi, D. Hou, K.H. Chung, C. Xu, S. Zhao, Y. Zhang: Characterization of heteroatom compounds in a crude oil and its saturates aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energ. Fuels 24, 2545–2553 (2010)

    Article  CAS  Google Scholar 

  20. E. Furimsky: Chapter 2: Properties of heavy feeds. In: Catalysts for Upgrading Heavy Petroleum Feeds, Studies in Surface Sciene and Catalysis, Vol. 169, ed. by E. Furimsky (Elsevier, Amsterdam 2007) pp. 5–22

    Chapter  Google Scholar 

  21. T. Kim, J. Ryu, M.J. Kim, H.J. Kim, Y.G. Shul, Y. Jeon, J.I. Park: Characterization and analysis of vanadium and nickel species in atmospheric residues, Fuel 117(A), 783–791 (2014)

    Article  CAS  Google Scholar 

  22. M. Zeinali, M. Jamalan: Biocatalytic activity of methyl-modified microperoxidase-11 in transformation of nickel- and vanadium-porphyrins, J. Mol. Catal. B 79, 21–26 (2012)

    Article  CAS  Google Scholar 

  23. P.C.H. Mitchell, C.E. Scott: Interaction of vanadium and nickel porphyrins with catalysts, relevance to catalytic demetallization, Catal. Today 7(4), 467–477 (1990)

    Article  CAS  Google Scholar 

  24. P.I. Premović, I.R. Tonsa, M.T. Pajović, L. Lopez, S.L. Monaco, D.M. Đorđević, M.S. Pavlović: Electron spin resonance study of the kerogen/asphaltene vanadyl porphyrins: Air oxidation, Fuel 80, 635–639 (2001)

    Article  Google Scholar 

  25. J. Ellis, C. Rechsteiner, M. Moir, S. Wilbur: Determination of volatile nickel and vanadium species in crude oil and crude oil fractions by gas chromatography coupled to inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 26, 1674–1678 (2011)

    Article  CAS  Google Scholar 

  26. A.M. Mckenna, J.T. Williams, J.C. Putman, C. Aeppli, C.M. Reddy, D.L. Valentine, K.L. Lemkau, M.Y. Kellermann, J.J. Savory, N.K. Kaiser, A.G. Marshall, R.P. Rodgers: Unprecedented ultrahigh resolution FT-ICR mass spectrometry and parts-per-billion mass accuracy enable direct characterization of nickel vanadyl porphyrins in petroleum from natural seeps, Energ. Fuels 28, 2454–2464 (2014)

    Article  CAS  Google Scholar 

  27. X. Zhao, Y. Liu, C. Xu, Y. Yan, Y. Zhang, Q. Zhang, S. Zhao, K. Chung, M.R. Gray, Q. Shi: Separation and characterization of vanadyl porphyrins in Venezuela Orinoco heavy crude oil, Energ. Fuels 27, 2874–2882 (2013)

    Article  CAS  Google Scholar 

  28. E. Furimsky: Catalytic hydrodeoxygenation, Appl. Catal. A 199, 147–190 (2000)

    Article  CAS  Google Scholar 

  29. O. Yépez: Influence of different sulfur compounds on corrosion due to naphthenic acid, Fuel 84, 97–104 (2005)

    Article  CAS  Google Scholar 

  30. S.D. Sumbogo Murti, K. Sakanishi, O. Okuma, Y. Korai, I. Mochida: Detail characterization of heteroatom-containing molecules in light distillates derived from Tanito harum coal and its hydrotreated oil, Fuel 81, 2241–2248 (2002)

    Article  CAS  Google Scholar 

  31. F.E. Massoth, S.C. Kim: Polymer formation during the HDN of indole, Catal. Lett. 57, 129–134 (1999)

    Article  CAS  Google Scholar 

  32. T.G. Kaufmann, A. Kaldor, G.F. Stuntz, M.C. Kerby, L.L. Ansell: Catalysis science and technology for cleaner transportation fuels, Catal. Today 62, 77–90 (2000)

    Article  CAS  Google Scholar 

  33. J. Wei, L.L. Hegedus: Catalyst Design – Progress and Perspective (Wiley, New York 1987)

    Google Scholar 

  34. I. Isoda, S. Nagao, X. Ma, Y. Korai, I. Mochida: Hydrodesulfurization pathway of 4,6-dimethyldibenzothiophene through isomerization over Y-zeolite containing CoMo/Al2O3 catalyst, Energ. Fuels 10, 1078–1082 (1996)

    Article  CAS  Google Scholar 

  35. J. Ramírez, R. Contreras, P. Castillo, T. Klimova, R. Zárate, R. Luna: Characterization and catalytic activity of CoMo HDS catalysts supported on alumina-MCM-41, Appl. Catal. A 197, 69–78 (2000)

    Article  Google Scholar 

  36. P. Michaud, J.L. Lemberton, G. Pérot: Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Effect of an acid component on the activity of a sulfide NiMo on alumina catalyst, Appl. Catal. A 169, 343–353 (1998)

    Article  CAS  Google Scholar 

  37. M.S. Rana, S.K. Maity, J. Ancheyta, J. Murali Dhar, T.S.R. Prasada Rao: TiO2-SiO2 supported hydrotreating catalysts: Physico-chemical characterization and activities, Appl. Catal. A 253, 165–176 (2003)

    Article  CAS  Google Scholar 

  38. E. Lecrenay, K. Sakanishi, I. Mochida, T. Suzuka: Hydrodesulfurization activity of CoMo and NiMo catalysts supported on some acidic binary oxides, Appl. Catal. A 175, 237–243 (1998)

    Article  CAS  Google Scholar 

  39. P.R. Robinson, H.D. Simpson: Ni-P-Mo catalyst and hydroprocessing use thereof, US Patent (Application) 4738944 (1988)

    Google Scholar 

  40. T.I. Koranyi: Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in thiophene hydrodesulfurization, Appl. Catal. A 239, 253–267 (2003)

    Article  CAS  Google Scholar 

  41. S. Dzwigaj, C. Louis, M. Breysse, M. Cattenot, V. Belliére, C. Geantet, M. Vrinat, P. Blanchard, E. Payen, S. Inoue, H. Kudo, Y. Yoshimura: New generation of titanium dioxide support for hydrodesulfurization, Appl. Catal. B 41, 181–191 (2003)

    Article  CAS  Google Scholar 

  42. E. Lecrenay, K. Sakanishi, T. Nagamatsu, I. Mochida, T. Suzuka: Hydrodesulfurization activity of CoMo and NiMo supported on Al2O3-TiO2 for some model compounds and gas oils, Appl. Catal. B 18, 325–330 (1998)

    Article  CAS  Google Scholar 

  43. E.Y. Kaneko, S.H. Pulcinelli, V.T. Silva, C.V. Santilli: Sol-gel synthesis of titania-alumina catalyst supports, Appl. Catal. A 235, 71–78 (2002)

    Article  CAS  Google Scholar 

  44. C. Pohal, F. Kameda, K. Hoshino, S. Yoshinaka, K. Segawa: Hydrodesulfurization of dibenzothiophene derivatives over TiO2-Al2O3 supported sulfide molybdenum catalyst, Catal. Today 39, 21–32 (1997)

    Article  Google Scholar 

  45. J. Ramirez, L. Cedeno, G. Busca: The role of titania support in Mo-based hydrodesulfurization catalysts, J. Catal. 184, 59–67 (1999)

    Article  CAS  Google Scholar 

  46. T.M. Mata, R.L. Smith, D.M. Young, C.A. Costa: Life cycle assessment of gasoline blending options, Environ. Sci. Technol. 37, 3724–3732 (2003)

    Article  CAS  Google Scholar 

  47. H. Farag, D.D. Whitehurst, K. Sakanishi, I. Mochida: Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel, Catal. Today 50, 9–17 (1999)

    Article  CAS  Google Scholar 

  48. E. Auer, A. Freund, J. Pietsch, T. Tacke: Carbons as supports for industrial precious metal catalysts, Appl. Catal. A 173, 259–271 (1998)

    Article  CAS  Google Scholar 

  49. D.D. Whitehurst, H. Farag, T. Nagamatsu, K. Sakanishi, I. Mochida: Assessment of limitation and potentials for improvement in deep desulfurization through detailed kinetic analysis of mechanistic pathways, Catal. Today 45, 299–305 (1998)

    Article  CAS  Google Scholar 

  50. E. Furimsky, F.E. Massoth: Deactivation of hydroprocessing catalysts, Catal. Today 52, 381–495 (1999)

    Article  CAS  Google Scholar 

  51. M. Amemiya, Y. Korai, I. Mochida: Catalyst deactivation in distillate hydrotreating. (Part 2) Raman analysis of carbon deposited on hydrotreating catalyst for vacuum gas oil, J. Japan. Petro. Ins. 46, 99–104 (2003)

    Article  CAS  Google Scholar 

  52. P.R. Robinson: Petroleum and its products. In: Handbook of Industrial Chemistry and Biotechnology, ed. by J. Kent (Springer Science+Business Media, New York 2012), Chap. 18

    Google Scholar 

  53. M.J. Girigis, B.C. Gates: Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing, Ind. Eng. Chem. Res. 30, 2021–2058 (1991)

    Article  Google Scholar 

  54. N.K. Nag, A.V. Sapre, D.H. Broderiock, B.C. Gates: Hydrodesulfurization of polycyclic aromatics catalyzed by sulfide CoO-MoO3/γ-Al2O3: The relative reactivities, J. Catal. 57, 509–512 (1979)

    Article  CAS  Google Scholar 

  55. X. Ma, K. Sakanishi, I. Mochida: Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel, Ind. Eng. Chem. Res. 33, 218–222 (1994)

    Article  CAS  Google Scholar 

  56. P. Wiwel, B. Hinnemann, A. Hidalgo-Vivas, P. Zeuthen, B.O. Petersen, J.Ø. Duus: Characterization and identification of the most refractory nitrogen compounds in hydroprocessed vacuum gas oil, Ind. End. Chem. Res. 49, 3184–3193 (2010)

    Article  CAS  Google Scholar 

  57. T. Kim, A. Al-Mutairi, A.M.J. Marafi, J.I. Park, H. Koyama, S.H. Yoon, J. Miyawaki, I. Mochida: Hydrotreatment of two atmospheric residues from Kuwait export and lower Fars crude oils, Fuel 117(A), 191–197 (2014)

    Article  CAS  Google Scholar 

  58. A.H. Hegazi, E.M. Fathalla, S.K. Panda, W. Schrader, J.T. Andersson: High-molecular weight sulfur-containing aromatics refractory to weathering as determined by Fourier transform ion cyclotron resonance mass spectrometry, Chemosphere 89, 205–212 (2012)

    Article  CAS  Google Scholar 

  59. L. Pereira de Oliveira, J.J. Verstraete, A. Trujillo Vazquez, M. Kolb: Molecular reconstruction of petroleum fractions: Application to vacuum residues from different orgins, Energ. Fuel 77, 3622–3641 (2013)

    Article  CAS  Google Scholar 

  60. H. Muller, F.M. Adam, S.K. Panda, H.H. Al-Jawaad, A.A. Al-Hajji: Evaluation of quantitive sulfur speciation in gas oils by Fourier transform ion cyclotron resonance mass spectrometry: Validation by comprehensive two-dimensional gas chromatography, J. Am. Soc. Mass Spectrom. 23, 806–815 (2012)

    Article  CAS  Google Scholar 

  61. R. Prins: Catalytic hydrogenation, Adv. Catal. 46, 399–464 (2001)

    CAS  Google Scholar 

  62. H. Topsøe, B.S. Clausen, F.E. Massoth: Hydrotreating catalysis. In: Catalysis – Science and Technology, Vol. 11, ed. by J.R. Anderson, M. Boudart (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  63. T. Kabe, A. Ishihara, W. Qian: Hydrodesulfurization and Hydrodenitrogenation Chemistry and Engineering (Kodansha, Tokyo 1999)

    Google Scholar 

  64. E. Furimsky, F.E. Massoth: Hydrodenitrogenation of petroleum, Catal. Rev. Sci. Eng. 47, 297–489 (2005)

    Article  CAS  Google Scholar 

  65. T. Song, Z. Zhang, J. Chen, Z. Ring, H. Yang, Y. Zheng: Effect of aromatics on deep hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo/Al2O3 catalyst, Energ. Fuels 20, 2344–2349 (2006)

    Article  CAS  Google Scholar 

  66. M. Egorova, Y. Zhao, P. Kukula, R. Prins: On the role of β-hydrogen atoms in the hydrodenitrogenation of 2-methylpyridine and 2-methylpiperidine, J. Catal. 206, 263–271 (2002)

    Article  CAS  Google Scholar 

  67. F. Rota, R. Prins: Role of hydrogenolysis and nucleophilic substitution in hydrodenitrogenation over sulfide NiMo/γ-Al2O3, J. Catal. 202, 195–199 (2001)

    Article  CAS  Google Scholar 

  68. A. Zhang, Q. Ma, K. Wang, X. Liu, P. Shuler, Y. Tang: Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide, Appl. Catal. A 303, 103–109 (2006)

    Article  CAS  Google Scholar 

  69. O.D. Onukwuli, I.M. Onyia, E.O. Ekumankama, S.I. Okeke: Solvent demetallization of atmospheric and vacuum residues, Petro. Sci. Tech. 17, 37–49 (1999)

    Article  CAS  Google Scholar 

  70. J.T. Miller, R.B. Fisher: Structural determination by XAFS spectroscopy of non-porphyrin nickel and vanadium in maya residuum, hydrocracking residuum, and toluene–insoluble solid, Energ. Fuels 13, 719–727 (1999)

    Article  CAS  Google Scholar 

  71. C.D. Pearson, J.B. Green: Comparison of processing characteristics of Mayan and Wilmington heavy residues: 1. Acid-base-neutral fractionation and characterization, Fuel 68, 456–464 (1989)

    Article  CAS  Google Scholar 

  72. C.D. Pearson, J.B. Green: Comparison of processing characteristics of Mayan and Wilmington heavy residues: 2. Characterization of vanadium and nickel complexes in acid-base-neutral fractions, Fuel 68, 465–474 (1989)

    Article  CAS  Google Scholar 

  73. Y.Y. Gao, B.X. Shen, J.C. Liu: Distribution of nickel and vanadium in Venezuela crude oil, Pet. Sci. Tech. 31, 509–515 (2013)

    Article  CAS  Google Scholar 

  74. L. Carbognani, J.C. Arambarri, H. Molero, P. Pereira-Almao: High temperature simulated distillation of bitumen fractions with open tubular capillary depleted silicone/siloxane stationary phases, Energ. Fuels 27, 2033–2041 (2013)

    Article  CAS  Google Scholar 

  75. G.C. Laredo, C.R. López, R.E. Álvarez, J.L. Cano: Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oil, Fuel 83, 1689–1695 (2004)

    Article  CAS  Google Scholar 

  76. B.S. Huang, W.F. Yin, D.H. Sang, Z.Y. Jiang: Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit, Appl. Surf. Sci. 259, 664–670 (2012)

    Article  CAS  Google Scholar 

  77. B.M.F. Ávila, V.B. Pereira, A.O. Gomes, D.A. Azevedo: Speciation of organic sulfur compounds using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry: A powerful tool for petroleum refining, Fuel 126, 188–193 (2014)

    Article  CAS  Google Scholar 

  78. L. Ding, Y. Zheng, Z. Zhang, Z. Ring, J. Chen: Hydrotreating of light cycle oil using WNi catalysts containing hydrothermally and chemically treated zeolite Y, Catal. Today 125, 229–238 (2007)

    Article  CAS  Google Scholar 

  79. L. Ding, Y. Zheng, H. Yang, R. Parviz: LCO hydrotreating with Mo-Ni and W-Ni supported on nano- and micro-sized zeoite beta, Appl. Catal. A 353, 17–23 (2009)

    Article  CAS  Google Scholar 

  80. W. Li, Z. Wang, M. Zhang, K. Tao: Novel Ni2Mo3N/zeolite catalysts used for aromatics hydrogenation as well as polycyclic hydrocarbon ring opening, Catal. Comm. 6, 656–660 (2005)

    Article  CAS  Google Scholar 

  81. X. Liu, K.J. Smith: Acidity and deactivation of Mo2C/HY catalysts used for the hydrogenation and ring opening of naphthalene, Appl. Catal A: Gen. 335, 230–240 (2008)

    Article  CAS  Google Scholar 

  82. J.I. Park, J.K. Lee, J. Miyawaki, Y.K. Kim, S.H. Yoon, I. Mochida: Hydro-conversion of 1-methyl naphthalene into (alkyl) benzenes over alumina-coated USY zeolite-supported NiMoS catalysts, Fuel 90, 182–189 (2011)

    Article  CAS  Google Scholar 

  83. A. Stanislaus, A. Marafi, M.S. Rana: Recent advances in the science and technology of ultralow sulfur diesel (ULSD) production, Catal. Today 153, 1–68 (2010)

    Article  CAS  Google Scholar 

  84. Y. Sano: K-.H. Choi, Y. Korai, I. Mochida: Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization, Appl. Catal. B 49, 219–225 (2004)

    Article  CAS  Google Scholar 

  85. N. Azizi, S.A. Ali, K. Alhooshani, T. Kim, Y. Lee, J.I. Park, J. Miyawaki, S.H. Yoon, I. Mochida: Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports, Fuel Process. Technol. 109, 172–178 (2013)

    Article  CAS  Google Scholar 

  86. S.A. Ali, S. Ahmed, K.W. Ahmed, M.A. Al-Saleh: Simultaneous hydrodesulfurization of dibenzothiophene and substituted dibenzothiophenes over phosphorus modified CoMo/Al2O3 catalysts, Fuel Process. Technol. 98, 39–44 (2012)

    Article  CAS  Google Scholar 

  87. H. Topsøe, B.S. Clausen, F.E. Massoth: Hydrotreating catalysis. In: Hydrotreating Catalysis – Science and Technology, Vol. 11, ed. by J.R. Anderson, M. Boudart (Springer, New York 1996)

    Google Scholar 

  88. D.A. Pappal, F.L. Plantenga, W.J. Tracy, R.A. Bradway, G. Chitnis, W.E. Lewis: Stellar improvement in hydroprocessing catalyst activity. In: Proc. NPRA, Annu. Meet., San Antonio (2003)

    Google Scholar 

  89. M.R. Gray: Upgrading Petroleum Residues and Heavy Oils (Marcel Dekker, New York 1994)

    Google Scholar 

  90. M.S. Rana, V. Sámano, J. Ancheyta, J.A.I. Diaz: A review of recent advances on process technologies for upgrading of heavy oils and residua, Fuel 86, 1216–1231 (2007)

    Article  CAS  Google Scholar 

  91. Z. Li, Z. Xia, W. Lai, J. Zheng, B. Chen, X. Yi, W. Fang: Hydrodemetallation(HDM) of nickel-5,10,15,20-tetraphenylporphyrion (Ni-TPP) over NiMo/γ-Al2O3 catalyst prepared by one-pot method with controlled precipitation of the components, Fuel 97, 504–511 (2012)

    Article  CAS  Google Scholar 

  92. S.K. Maity, E. Blanco, J. Ancheyta, F. Alonso, H. Fukuyama: Early stage deactivation of heavy crude oil hydroprocessing catalysts, Fuel 100, 17–23 (2012)

    Article  CAS  Google Scholar 

  93. M. Marafi, A. Stanislaus: Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts, Catal. Today 130, 421–428 (2008)

    Article  CAS  Google Scholar 

  94. M. Marafi, A. Stanislaus: Spend catalyst waste management: A review: Part 1-Development in hydroprocessing catalyst waste reduction and use, Resour. Conserv. Recy. 52, 859–873 (2008)

    Article  Google Scholar 

  95. A. Hauser, A. Marafi, A. Almutairi, A. Stanislaus: Comparative study of hydrodemetallization (HDM) catalyst aging by boscan feed and Kuwait atmospheric residue, Energ. Fuels 22, 2925–2932 (2008)

    Article  CAS  Google Scholar 

  96. A. Al-Mutairi, D. Bahzad, M.A. Halabi: A comparation study on the performance of a catalyst system for the desulfurization of two kinds of atmospheric residues, Kuwait Export and Eocene residual oils, Catal. Today 125, 203–210 (2007)

    Article  CAS  Google Scholar 

  97. M.S. Rana, J. Ancheyta, P. Rayo: A comparative study for heavy oil hydroprocessing catalysts at micro-flow and bench-scale reactors, Catal. Today 109, 24–32 (2005)

    Article  CAS  Google Scholar 

  98. F.X. Long, B.S. Gevert, P. Abrahamsson: Mechanistic studies of initial decay of hydrodemetallization catalysts using model compounds-effects of adsorption of metal species on alumina support, J. Catal. 222, 6–16 (2004)

    Article  CAS  Google Scholar 

  99. A.T. Jarullah, I.M. Mujtaba, A.S. Wood: Kinetic model development and simultaneous hydrodenitrogenation and hydrodemetallization of crude oil in trickle bed reactor, Fuel 90, 2165–2181 (2011)

    Article  CAS  Google Scholar 

  100. F.X. Long, B.S. Gevert: Kinetic parameter estimation and statistical analysis of vanadyl etioporphyrin hydrodemetallization, Comput. Chem. Eng. 27, 697–700 (2003)

    Article  CAS  Google Scholar 

  101. F.X. Long, B.S. Gevert: Kinetics of vanadyl etioporphyrin hydrodemetallization, J. Catal. 200, 91–98 (2001)

    Article  CAS  Google Scholar 

  102. Chevron Technical Marketing: OCR, http://www.chevrontechnologymarketing.com/CLGtech/ocr.aspx

  103. K. Sakanishi, N. Yamashita, D.D. Whitehurst, I. Mochida: Depolymerization and demetallation treatments of asphaltene in vacuum residue, Catal. Today 43, 241–247 (1998)

    Article  CAS  Google Scholar 

  104. G. Caumette, C.P. Lienemann, I. Merdrignac, B. Bouyssiere, R. Lobinski: Element speciation analysis of petroleum and related materials, J. Anal. At. Spectrom. 24, 263–267 (2009)

    Article  CAS  Google Scholar 

  105. I. Mochida, O. Okuma, S.H. Yoon: Chemicals from direct coal liquefaction, Chem. Rev. 114, 1637–1672 (2014)

    Article  CAS  Google Scholar 

  106. A. Delbianco: Eni slurry technology: A new process for heavy oil upgrading. In: Proc. 19th World Petroleum Congress (2008)

    Google Scholar 

  107. A. Bhattacharyya, B. Mezza: Nano-catalysts for advanced slurry hydrocracking of heavy oil, special feature in process news, Catal. Rev. 24, 6–11 (2011)

    Google Scholar 

  108. Z.M. Cheng, Y. Ding, L.Q. Zhao, P.Q. Yuan, W.K. Yuan: Effects of supercritical water in vacuum residue upgrading, Energ. Fuel. 23, 3178–3183 (2009)

    Article  CAS  Google Scholar 

  109. C.S. Hsu: Analytical Advances for Hydrocarbon Research (Kluwer/Plenum, New York 2003)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the Japan Cooperation Center, Petroleum (JCCP) for funding our research project on the refining of Kuwait Crudes through the support of Japan Ministry of Economy, Trade and Industry (METI), through which this chapter has been prepared. The authors would like to express gratitude to Dr. M. Marafi, ED/PRC at the Petroleum Research Center for her continued managerial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Il Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, JI., Mochida, I., Marafi, A.M.J., Al-Mutairi, A. (2017). Modern Approaches to Hydrotreating Catalysis. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_21

Download citation

Publish with us

Policies and ethics