Skip to main content

The Emerging Role of Sphingolipids in Cancer Stem Cell Biology

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Abstract

Tumours are widely considered to be composed of a heterogeneous population of cells that collectively constitute a “community” that permits tumour cell growth. As a part of this “community”, the influx of invading immune, endothelial, and mesenchymal cells can regulate tumour growth in both positive and negative manners. Even within the tumour cell population itself, there is genetic diversity that divides the overall population into distinct sub-populations. Many chemotherapeutic regimes are effective at targeting the bulk of the tumour population. Despite the apparent eradication of the tumour population, minimal residual disease persists driving disease relapse and the subsequent treatment of relapsed/refractory disease remains a problem. A part of this problem remains the inability of current drug treatment regimens to effectively target the cancer stem cell population. Currently, there is emerging evidence to suggest that sphingolipids and alterations in sphingolipid metabolism contribute to cancer stem cell biology. Here, we summarise these findings and identify potential areas for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH1:

Aldehyde dehydrogenase 1

AML:

Acute myeloid leukaemia

BCSC:

Breast cancer stem cell

C1P:

Ceramide-1-phosphate

CERT:

Ceramide transport protein

CSC:

Cancer stem cell

EGFR:

Epidermal growth factor receptor

ENL:

Eleven-nineteen-leukaemia

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FLK-1:

Foetal liver kinase-1

GCS:

Glucosylceramide synthase

HDAC:

Histone deacetylase

HSC:

Haematopoietic stem cell

HSPC:

Haematopoietic stem and progenitor cells

MEF:

Mouse embryonic fibroblast

MLL:

Mixed lineage leukaemia

MSC:

Mesenchymal stem cells

PDGF:

Platelet-derived growth factor

ROS:

Reactive oxygen species

S1P:

Sphingosine 1-phosphate

S1P1–5 :

S1P receptors 1–5

SK:

Sphingosine kinase

TMZ:

Temozolomide

References

  1. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  4. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    Article  CAS  PubMed  Google Scholar 

  6. Lee EM, Yee D, Busfield SJ, McManus JF, Cummings N, Vairo G et al (2015) Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica 100(7):914–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al (2002) Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 100(7):2387–2392

    Article  CAS  PubMed  Google Scholar 

  8. Reinisch A, Thomas D, Corces MR, Zhang X, Gratzinger D, Hong W-J, et al (2016) A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med

    Google Scholar 

  9. Jordan C, Upchurch D, Szilvassy S, Guzman M, Howard D, Pettigrew A et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14(10):1777–1784

    Article  CAS  PubMed  Google Scholar 

  10. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Medema JP (2013) Cancer stem cells: The challenges ahead. Nat Cell Biol 15(4):338–344

    Article  CAS  PubMed  Google Scholar 

  14. Curtis SJ, Sinkevicius KW, Li D, Lau AN, Roach RR, Zamponi R et al (2010) Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7(1):127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagadinou Eleni D, Sach A, Callahan K, Rossi Randall M, Neering Sarah J, Minhajuddin M et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gentner B, Visigalli I, Hiramatsu H, Lechman E, Ungari S, Giustacchini A et al (2010) Identification of hematopoietic stem cell-specific miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl Med 2(58):58ra84

    Article  CAS  PubMed  Google Scholar 

  17. Lechman Eric R, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte Francesco E et al (2012) Attenuation of miR-126 activity expands HSC in-vivo without exhaustion. Cell Stem Cell 11(6):799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lechman ER, Gentner B, Ng SW, Schoof EM, van Galen P, Kennedy JA et al (2016) miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29(2):214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    Article  CAS  PubMed  Google Scholar 

  20. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    Article  CAS  PubMed  Google Scholar 

  21. Williams RT, den Besten W, Sherr CJ (2007) Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes Dev 21(18):2283–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rehe K, Wilson K, Bomken S, Williamson D, Irving J, den Boer ML et al (2013) Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med 5(1):38–51

    Article  CAS  PubMed  Google Scholar 

  23. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108(19):7950–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL (2003) Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17(24):3029–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833

    Article  CAS  PubMed  Google Scholar 

  26. Lavau C, Du C, Thirman M, Zeleznik-Le N (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19(17):4655–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. So CW, Karsunky H, Passegué E, Cozzio A, Weissman IL, Cleary ML (2003) MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3(2):161–171

    Article  CAS  PubMed  Google Scholar 

  28. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822

    Article  CAS  PubMed  Google Scholar 

  29. Zhao X, Malhotra GK, Lele SM, Lele MS, West WW, Eudy JD et al (2010) Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate. Proc Natl Acad Sci U S A 107(32):14146–14151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwitalla S, Fingerle Alexander A, Cammareri P, Nebelsiek T, Göktuna Serkan I, Ziegler Paul K et al (2012) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152(1):25–38

    PubMed  Google Scholar 

  31. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Veldman RJ, Klappe K, Hinrichs J, Hummel I, van der Schaaf G, Sietsma H et al (2002) Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J 16(9):1111–1113

    CAS  PubMed  Google Scholar 

  33. Pitson SM (2011) Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36(2):97–107

    Article  CAS  PubMed  Google Scholar 

  34. Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T et al (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20(1):95–102

    Article  CAS  PubMed  Google Scholar 

  35. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–560

    Article  CAS  PubMed  Google Scholar 

  36. An S, Zheng Y, Bleu T (2000) Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J Biol Chem 275(1):288–296

    Article  CAS  PubMed  Google Scholar 

  37. Nincheri P, Luciani P, Squecco R, Donati C, Bernacchioni C, Borgognoni L et al (2009) Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells. Cell Mol Life Sci 66(10):1741–1754

    Article  CAS  PubMed  Google Scholar 

  38. Kimura T, Watanabe T, Sato K, Kon J, Tomura H, Tamama K et al (2000) Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 348(Pt 1):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    Article  CAS  PubMed  Google Scholar 

  40. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  PubMed  Google Scholar 

  41. Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A et al (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23(10):1541–1548

    Article  CAS  PubMed  Google Scholar 

  42. Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17(4):242–254

    Article  CAS  PubMed  Google Scholar 

  43. Harada J, Foley M, Moskowitz MA, Waeber C (2004) Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 88(4):1026–1039

    Article  CAS  PubMed  Google Scholar 

  44. Ryu JM, Baek YB, Shin MS, Park JH, Park SH, Lee JH et al (2014) Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. Stem Cell Res 12(1):69–85

    Article  CAS  PubMed  Google Scholar 

  45. Price ST, Beckham TH, Cheng JC, Lu P, Liu X, Norris JS (2015) Sphingosine 1-phosphate. Receptor 2 regulates the migration, proliferation, and differentiation of mesenchymal stem cells. Int J Stem Cell Res Ther 2(2):014

    Article  PubMed  PubMed Central  Google Scholar 

  46. Goparaju SK, Jolly PS, Watterson KR, Bektas M, Alvarez S, Sarkar S et al (2005) The S1P2 receptor negatively regulates platelet-derived growth factor-induced motility and proliferation. Mol Cell Biol 25(10):4237–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pébay A, Bonder CS, Pitson SM (2007) Stem cell regulation by lysophospholipids. Prostaglandins Other Lipid Mediat 84(3–4):83–97

    Article  PubMed  CAS  Google Scholar 

  48. O'Brien CA, Kreso A, Jamieson CHM (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16(12):3113–3120

    Article  PubMed  Google Scholar 

  49. Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS (2015) Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 4:e177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y-Y, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J et al (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and β-catenin signaling. Mol Cancer 9(1):1–15

    Google Scholar 

  51. Bhinge KN, Gupta V, Hosain SB, Satyanarayanajois SD, Meyer SA, Blaylock B et al (2012) The opposite effects of doxorubicin on bone marrow stem cells versus breast cancer stem cells depend on glucosylceramide synthase. Int J Biochem Cell Biol 44(11):1770–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gupta V, Bhinge KN, Hosain SB, Xiong K, Gu X, Shi R et al (2012) Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem 287(44):37195–37205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H et al (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3(5):633–639

    CAS  PubMed  Google Scholar 

  54. Liu Y-Y, Li Y-T (2013) Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 117:59–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20(1):4–21

    CAS  PubMed  Google Scholar 

  56. Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI (2013) Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci U S A 110(13):4968–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO et al (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122(6):2066–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hirata N, Yamada S, Shoda T, Kurihara M, Sekino Y, Kanda Y (2014) Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nat Commun 5:4806

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y-C, Tsai C-F, Chuang H-L, Chang Y-C, Chen H-S, Lee J-N, et al (2016) Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling. Oncotarget. doi:10.18632/oncotarget.9007

    Google Scholar 

  60. Marfia G, Campanella R, Navone SE, Di Vito C, Riccitelli E, Hadi LA et al (2014) Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. Glia 62(12):1968–1981

    Article  PubMed  Google Scholar 

  61. Wallington-Beddoe CT, Powell JA, Tong D, Pitson SM, Bradstock KF, Bendall LJ (2014) Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res 74(10):2803–2815

    Article  CAS  PubMed  Google Scholar 

  62. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murphy MJ, Wilson A, Trumpp A (2005) More than just proliferation: Myc function in stem cells. Trends Cell Biol 15(3):128–137

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE et al (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3(11):e3769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Panneer Selvam S, De Palma RM, Oaks JJ, Oleinik N, Peterson YK, Stahelin RV et al (2015) Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Sci Signal 8(381):ra58-ra

    Article  CAS  Google Scholar 

  66. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25(11):1315–1321

    Article  CAS  PubMed  Google Scholar 

  67. Ogretmen B, Hannun YA (2001) Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updates 4(6):368–377

    Article  CAS  Google Scholar 

  68. Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V et al (2005) Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 65(24):11667–11675

    Article  CAS  PubMed  Google Scholar 

  69. Bektas M, Jolly PS, Muller C, Eberle J, Spiegel S, Geilen CC (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24(1):178–187

    Article  CAS  PubMed  Google Scholar 

  70. Song L, Xiong H, Li J, Liao W, Wang L, Wu J et al (2011) Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-κB pathway in human non–small cell lung cancer. Clin Cancer Res 17(7):1839–1849

    Article  CAS  PubMed  Google Scholar 

  71. Riccitelli E, Giussani P, Di Vito C, Condomitti G, Tringali C, Caroli M et al (2013) Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival. PLoS One 8(6):e68229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Juul N, Szallasi Z, Eklund AC, Li Q, Burrell RA, Gerlinger M et al (2010) Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet Oncol 11(4):358–365

    Article  CAS  PubMed  Google Scholar 

  73. Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, Hanada K (2005) CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem 280(8):6488–6495

    Article  CAS  PubMed  Google Scholar 

  74. Xu JX, Morii E, Liu Y, Nakamichi N, Ikeda J, Kimura H et al (2007) High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: high expression of CD55 as a novel character for side-population. Exp Cell Res 313(9):1877–1885

    Article  CAS  PubMed  Google Scholar 

  75. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972):355–360

    Article  CAS  PubMed  Google Scholar 

  76. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA et al (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24(5):976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ryser MF, Ugarte F, Lehmann R, Bornhauser M, Brenner S (2008) S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing. Mol Immunol 46(1):166–171

    Article  CAS  PubMed  Google Scholar 

  79. Adamiak M, Borkowska S, Wysoczynski M, Suszynska M, Kucia M, Rokosh G et al (2015) Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow. Oncotarget 6(22):18819–18828

    Article  PubMed  PubMed Central  Google Scholar 

  80. Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18(3):551–553

    CAS  PubMed  Google Scholar 

  81. Juarez JG, Harun N, Thien M, Welschinger R, Baraz R, Dela Pena A et al (2012) Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 119(3):707–716

    Article  CAS  PubMed  Google Scholar 

  82. Ratajczak MZ, Kim C (2011) Bioactive sphingolipids and complement cascade as new emerging regulators of stem cell mobilization and homing. J Stem Cell Res Ther 1(2):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A et al (2012) Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 26(1):106–116

    Article  CAS  PubMed  Google Scholar 

  84. Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M et al (2013) Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 11(7):793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bowen C, Spiegel S, Gelmann EP (1998) Radiation-induced apoptosis mediated by retinoblastoma protein. Cancer Res 58(15):3275–3281

    CAS  PubMed  Google Scholar 

  86. Annabi B, Lachambre MP, Plouffe K, Sartelet H, Beliveau R (2009) Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 48(10):910–919

    Article  CAS  PubMed  Google Scholar 

  87. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C et al (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21(5):642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM et al (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 4(8):761–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bergelin N, Blom T, Heikkila J, Lof C, Alam C, Balthasar S et al (2009) Sphingosine kinase as an oncogene: autocrine sphingosine 1-phosphate modulates ML-1 thyroid carcinoma cell migration by a mechanism dependent on protein kinase C-alpha and ERK1/2. Endocrinology 150(5):2055–2063

    Article  CAS  PubMed  Google Scholar 

  90. Wang D, Zhao Z, Caperell-Grant A, Yang G, Mok SC, Liu J et al (2008) S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells. Mol Cancer Ther 7(7):1993–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Van Brocklyn JR, Young N, Roof R (2003) Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett 199(1):53–60

    Article  CAS  PubMed  Google Scholar 

  92. Albinet V, Bats ML, Huwiler A, Rochaix P, Chevreau C, Segui B et al (2014) Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. Oncogene 33(26):3364–3373

    Article  CAS  PubMed  Google Scholar 

  93. Ko P, Kim D, You E, Jung J, Oh S, Kim J et al (2016) Extracellular matrix rigidity-dependent sphingosine-1-phosphate secretion regulates metastatic cancer cell invasion and adhesion. Sci Rep 6:21564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194(1):1–11

    Article  CAS  PubMed  Google Scholar 

  95. Kawahara S, Otsuji Y, Nakamura M, Murakami M, Murate T, Matsunaga T et al (2013) Sphingosine kinase 1 plays a role in the upregulation of CD44 expression through extracellular signal-regulated kinase signaling in human colon cancer cells. Anticancer Drugs 24(5):473–483

    Article  CAS  PubMed  Google Scholar 

  96. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H et al (2001) Membrane-Type 1 matrix metalloproteinase cleaves Cd44 and promotes cell migration. J Cell Biol 153(5):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA et al (2010) TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18(6):655–668

    Article  CAS  PubMed  Google Scholar 

  98. Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khaled YS, Ammori BJ, Elkord E (2013) Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol 91(8):493–502

    Article  CAS  PubMed  Google Scholar 

  100. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  101. Morad SA, Cabot MC (2015) Tamoxifen regulation of sphingolipid metabolism—therapeutic implications. Biochim Biophys Acta 1851(9):1134–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Noack J, Choi J, Richter K, Kopp-Schneider A, Régnier-Vigouroux A (2014) A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy. Cell Death Dis 5(9):e1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Estrada-Bernal A, Palanichamy K, Ray Chaudhury A, Van Brocklyn JR (2012) Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro Oncol 14(4):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ et al (2013) PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 123(10):4144–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu Q, Zhao X, Frissora F, Ma Y, Santhanam R, Jarjoura D et al (2008) FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111(1):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Matsuoka Y, Nagahara Y, Ikekita M, Shinomiya T (2003) A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br J Pharmacol 138(7):1303–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pitman MR, Woodcock JM, Lopez AF, Pitson SM (2012) Molecular targets of FTY720 (fingolimod). Curr Mol Med 12(10):1207–1219

    Article  CAS  PubMed  Google Scholar 

  108. Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12(9):688–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lavie Y, Cao H-T, Volner A, Lucci A, Han T-Y, Geffen V et al (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272(3):1682–1687

    Article  CAS  PubMed  Google Scholar 

  110. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299

    Google Scholar 

  111. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M et al (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104(26):11008–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H et al (2010) TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7(6):708–717

    Article  CAS  PubMed  Google Scholar 

  113. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138–152

    Article  CAS  PubMed  Google Scholar 

  114. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+cells with cancer stem cell characteristics. Breast Cancer Res 10(1):1–16

    Article  CAS  Google Scholar 

  115. Liu SY, Zheng PS (2013) High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget 4(12):2462–2475

    Article  PubMed  PubMed Central  Google Scholar 

  116. López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12(1):1–14

    Article  CAS  Google Scholar 

  117. Du L, Wang H, He L, Zhang J, Ni B, Wang X et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14(21):6751–6760

    Article  CAS  PubMed  Google Scholar 

  118. Ke J, Wu X, Wu X, He X, Lian L, Zou Y et al (2012) A subpopulation of CD24(+) cells in colon cancer cell lines possess stem cell characteristics. Neoplasma 59(3):282–288

    Article  CAS  PubMed  Google Scholar 

  119. Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F et al (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol 12(10):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO (2011) CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9(1):50–63

    Article  CAS  PubMed  Google Scholar 

  121. Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A et al (2010) miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7(6):694–707

    Article  CAS  PubMed  Google Scholar 

  122. Ma S, Chan KW, Lee TK-W, Tang KH, Wo JY-H, Zheng B-J et al (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6(7):1146–1153

    Article  CAS  PubMed  Google Scholar 

  123. Leung EL-H, Fiscus RR, Tung JW, Tin VP-C, Cheng LC, Sihoe AD-L et al (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5(11):e14062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A et al (2007) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    Article  PubMed  CAS  Google Scholar 

  125. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70(23):9937–9948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44(+)CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98(4):756–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  PubMed  Google Scholar 

  128. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT–immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67(7):3153–3161

    Article  CAS  PubMed  Google Scholar 

  129. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzmán-Ramírez N et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70(12):5163–5173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fay Fuller Foundation, Neurosurgical Research Foundation, Cancer Council SA Beat Cancer Project Grant (1086295), an Australian Postgraduate Award and Royal Adelaide Hospital Dawes Top-up scholarship to ACL, and a National Health and Medical Research Council of Australia Senior Research Fellowship to SMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Pitson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lewis, A.C., Powell, J.A., Pitson, S.M. (2017). The Emerging Role of Sphingolipids in Cancer Stem Cell Biology. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_8

Download citation

Publish with us

Policies and ethics