Cannabinoids as Regulators of Neural Development and Adult Neurogenesis

  • Alline C. CamposEmail author
  • Juan Paraíso-Luna
  • Manoela V. Fogaça
  • Francisco S. Guimarães
  • Ismael Galve-Roperh
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Neurogenesis plays an indispensable role in the formation of the nervous system during development. The discovery that the adult brain still maintains neurogenic niches that allow the continued production of new cells after birth has changed the field of neuroscience. It has also opened a new venue of opportunities for the treatment of central nervous system disorders related to neuronal loss. This chapter has reviewed the studies showing that genetic or pharmacological manipulation of cannabinoid receptors (CB1 and CB2) or the enzymes responsible for endocannabinoid metabolism modify/regulate cell proliferation and neurogenesis during development and in the adult brain. A better characterization of the mechanisms involved in these effects could contribute to the development of new therapeutic alternatives to neurodegenerative and psychiatric disorders.


Neurogenesis Neurodevelopment Subventricular zone Hippocampus Cannabinoids 









Cannabinoid receptor type 1


Cannabinoid receptor type 2




Diacylglycerol lipase


Dentate gyrus






Monoacylglycerol lipase


Neural progenitor


Subgranular zone


Subventricular zone





We would like to thank Franciele Scarante for her technical support on design and graphic art of Figs. 6.1 and 6.3, and members of our research groups for an inspiring scientific environment. ACC and FSG are recipients of FAPESP grants. IGR research is funded by PI15-00310, RTC-2015-3364-1, and S2011-BMD-2336 supported by the Instituto de Salud Carlos III, Mineco (Plan Estatal de I+D+i 2013-2016) and Comunidad de Madrid. Research was cofinanced by the European Development Regional Fund “A way to achieve Europe” (ERDF). JPL is a recipient of FPU (Ministerio de Educación) fellowship. MVF is recipient of a CAPES fellowship.


  1. 1.
    Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51CrossRefGoogle Scholar
  2. 2.
    Mechoulam R, Lander N, Varkony TH, Kimmel I, Becker O, Ben-Zvi Z et al (1980) Stereochemical requirements for cannabinoid activity. J Med Chem 23(10):1068–1072PubMedCrossRefGoogle Scholar
  3. 3.
    Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34(5):605–613PubMedGoogle Scholar
  4. 4.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564PubMedCrossRefGoogle Scholar
  5. 5.
    Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedCrossRefGoogle Scholar
  6. 6.
    Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14(9):923–930PubMedCrossRefGoogle Scholar
  7. 7.
    Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature (London) 365:61–65CrossRefGoogle Scholar
  8. 8.
    Lisboa SF, Gomes FV, Guimaraes FS, Campos AC (2016) Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Front Neurol 7:5PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA et al (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536PubMedCrossRefGoogle Scholar
  10. 10.
    Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzman M, Galve-Roperh I (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20(13):2405–2407PubMedCrossRefGoogle Scholar
  11. 11.
    Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631PubMedCrossRefGoogle Scholar
  12. 12.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949PubMedCrossRefGoogle Scholar
  13. 13.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90PubMedCrossRefGoogle Scholar
  14. 14.
    Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T (2014) Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 15(12):786–801PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365CrossRefGoogle Scholar
  16. 16.
    Diana MA, Marty A (2004) Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 142(1):9–19PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410(6828):588–592PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci 22(5):1690–1697PubMedGoogle Scholar
  19. 19.
    Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88PubMedCrossRefGoogle Scholar
  20. 20.
    Galve-Roperh I, Chiurchiu V, Diaz-Alonso J, Bari M, Guzman M, Maccarrone M (2013) Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52(4):633–650PubMedCrossRefGoogle Scholar
  21. 21.
    Rubino T, Parolaro D (2016) The impact of exposure to cannabinoids in adolescence: insights from animal models. Biol Psychiatry 79(7):578–585PubMedCrossRefGoogle Scholar
  22. 22.
    Begbie J, Doherty P, Graham A (2004) Cannabinoid receptor, CB1, expression follows neuronal differentiation in the early chick embryo. J Anat 205(3):213–218PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Romero J, Garcia-Palomero E, Berrendero F, Garcia-Gil L, Hernandez ML, Ramos JA et al (1997) Atypical location of cannabinoid receptors in white matter areas during rat brain development. Synapse 26(3):317–323PubMedCrossRefGoogle Scholar
  24. 24.
    Maison P, Walker DJ, Walsh FS, Williams G, Doherty P (2009) BDNF regulates neuronal sensitivity to endocannabinoids. Neurosci Lett 467(2):90–94PubMedCrossRefGoogle Scholar
  25. 25.
    Eggan SM, Lazarus MS, Stoyak SR, Volk DW, Glausier JR, Huang ZJ et al (2012) Cortical glutamic acid decarboxylase 67 deficiency results in lower cannabinoid 1 receptor messenger RNA expression: implications for schizophrenia. Biol Psychiatry 71(2):114–119PubMedCrossRefGoogle Scholar
  26. 26.
    Blazquez C, Chiarlone A, Sagredo O, Aguado T, Pazos MR, Resel E et al (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain 134(Pt 1):119–136PubMedCrossRefGoogle Scholar
  27. 27.
    Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B et al (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB J 19(12):1704–1706PubMedGoogle Scholar
  28. 28.
    Butti E, Bacigaluppi M, Rossi S, Cambiaghi M, Bari M, Cebrian Silla A et al (2012) Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. Brain 135(Pt 11):3320–3335PubMedCrossRefGoogle Scholar
  29. 29.
    Rubio-Araiz A, Arevalo-Martin A, Gomez-Torres O, Navarro-Galve B, Garcia-Ovejero D, Suetterlin P et al (2008) The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Mol Cell Neurosci 38(3):374–380PubMedCrossRefGoogle Scholar
  30. 30.
    Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G et al (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M et al (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30(6):2017–2024PubMedCrossRefGoogle Scholar
  32. 32.
    Goncalves MB, Suetterlin P, Yip P, Molina-Holgado F, Walker DJ, Oudin MJ et al (2008) A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci 38(4):526–536PubMedCrossRefGoogle Scholar
  33. 33.
    Campos AC, Ortega Z, Palazuelos J, Fogaca MV, Aguiar DC, Diaz-Alonso J et al (2013) The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol 16(6):1407–1419PubMedCrossRefGoogle Scholar
  34. 34.
    Walker DJ, Suetterlin P, Reisenberg M, Williams G, Doherty P (2010) Down-regulation of diacylglycerol lipase-alpha during neural stem cell differentiation: identification of elements that regulate transcription. J Neurosci Res 88(4):735–745PubMedGoogle Scholar
  35. 35.
    Jung KM, Astarita G, Thongkham D, Piomelli D (2011) Diacylglycerol lipase-alpha and -beta control neurite outgrowth in neuro-2a cells through distinct molecular mechanisms. Mol Pharmacol 80(1):60–67PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Palazuelos J, Ortega Z, Diaz-Alonso J, Guzman M, Galve-Roperh I (2012) CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J Biol Chem 287(2):1198–1209PubMedCrossRefGoogle Scholar
  37. 37.
    Prenderville JA, Kelly AM, Downer EJ (2015) The role of cannabinoids in adult neurogenesis. Br J Pharmacol 172(16):3950–3963PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Díaz-Alonso J, Aguado T, de Salas-Quiroga A, Ortega Z, Guzman M, Galve-Roperh I (2015) CB1 cannabinoid receptor-dependent activation of mTORC1/Pax6 signaling drives Tbr2 expression and basal progenitor expansion in the developing mouse cortex. Cereb Cortex 25(9):2395–2408PubMedCrossRefGoogle Scholar
  39. 39.
    Díaz-Alonso J, Aguado T, Wu CS, Palazuelos J, Hofmann C, Garcez P, et al. The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 2012a;32(47):16651–65Google Scholar
  40. 40.
    Bromberg KD, Ma'ayan A, Neves SR, Iyengar R (2008) Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 320(5878):903–909PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Díaz-Alonso J, Guzman M, Galve-Roperh I. Endocannabinoids via CB(1) receptors act as neurogenic niche cues during cortical development. Philos Trans R Soc Lond B Biol Sci 2012b;367(1607):3229-41Google Scholar
  42. 42.
    Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14(11):755–769PubMedCrossRefGoogle Scholar
  43. 43.
    Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM et al (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316(5828):1212–1216PubMedCrossRefGoogle Scholar
  44. 44.
    Keimpema E, Barabas K, Morozov YM, Tortoriello G, Torii M, Cameron G et al (2010) Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding. J Neurosci 30(42):13992–14007PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Argaw A, Duff G, Zabouri N, Cecyre B, Chaine N, Cherif H et al (2011) Concerted action of CB1 cannabinoid receptor and deleted in colorectal cancer in axon guidance. J Neurosci 31(4):1489–1499PubMedCrossRefGoogle Scholar
  46. 46.
    Njoo C, Agarwal N, Lutz B, Kuner R (2015) The cannabinoid receptor CB1 interacts with the WAVE1 complex and plays a role in actin dynamics and structural plasticity in neurons. PLoS Biol 13(10):e1002286PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Roland AB, Ricobaraza A, Carrel D, Jordan BM, Rico F, Simon A et al (2014) Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. Elife 3:e03159PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mulder J, Aguado T, Keimpema E, Barabas K, Ballester Rosado CJ, Nguyen L et al (2008) Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc Natl Acad Sci U S A 105(25):8760–8765PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wu CS, Zhu J, Wager-Miller J, Wang S, O'Leary D, Monory K et al (2010) Requirement of cannabinoid CB(1) receptors in cortical pyramidal neurons for appropriate development of corticothalamic and thalamocortical projections. Eur J Neurosci 32(5):693–706PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Aguado T, Palazuelos J, Monory K, Stella N, Cravatt B, Lutz B et al (2006) The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. J Neurosci 26(5):1551–1561PubMedCrossRefGoogle Scholar
  51. 51.
    Gomez O, Sanchez-Rodriguez A, Le M, Sanchez-Caro C, Molina-Holgado F, Molina-Holgado E (2011) Cannabinoid receptor agonists modulate oligodendrocyte differentiation by activating PI3K/Akt and the mammalian target of rapamycin (mTOR) pathways. Br J Pharmacol 163(7):1520–1532PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E (2010) The endocannabinoid 2-arachidonoylglycerol reduces lesion expansion and white matter damage after spinal cord injury. Neurobiol Dis 38(2):304–312PubMedCrossRefGoogle Scholar
  53. 53.
    Tomas-Roig J, Wirths O, Salinas-Riester G, Havemann-Reinecke U (2016) The cannabinoid CB1/CB2 agonist WIN55212.2 promotes oligodendrocyte differentiation in vitro and neuroprotection during the cuprizone-induced central nervous system demyelination. CNS Neurosci Ther 22(5):387–395PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Alpár A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J et al (2014) Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun 5:4421PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Di Marzo V, Stella N, Zimmer A (2015) Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 16(1):30–42PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Psychoyos D, Hungund B, Cooper T, Finnell RH (2008) A cannabinoid analogue of Delta9-tetrahydrocannabinol disrupts neural development in chick. Birth Defects Res B Dev Reprod Toxicol 83(5):477–488PubMedCrossRefGoogle Scholar
  57. 57.
    Saez TM, Aronne MP, Caltana L, Brusco AH (2014) Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex. J Neurochem 129(4):637–648PubMedCrossRefGoogle Scholar
  58. 58.
    Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16(5):264–277PubMedCrossRefGoogle Scholar
  59. 59.
    de Salas-Quiroga A, Diaz-Alonso J, Garcia-Rincon D, Remmers F, Vega D, Gomez-Canas M et al (2015) Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons. Proc Natl Acad Sci U S A 112(44):13693–13698PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ruehle S, Remmers F, Romo-Parra H, Massa F, Wickert M, Wortge S et al (2013) Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions. J Neurosci 33(25):10264–10277PubMedCrossRefGoogle Scholar
  61. 61.
    Tortoriello G, Morris CV, Alpar A, Fuzik J, Shirran SL, Calvigioni D et al (2014) Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J 33(7):668–685PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Oudin MJ, Gajendra S, Williams G, Hobbs C, Lalli G, Doherty P (2011) Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 31(11):4000–4011Google Scholar
  63. 63.
    Vargish GA, Pelkey KA, Yuan X, Chittajallu R, Collins D, Fang C et al (2016) Persistent inhibitory circuit defects and disrupted social behaviour following in utero exogenous cannabinoid exposure. Mol PsychiatryGoogle Scholar
  64. 64.
    Földy C, Malenka RC, Sudhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78(3):498–509PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cass DK, Flores-Barrera E, Thomases DR, Vital WF, Caballero A, Tseng KY (2014) CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol Psychiatry 19(5):536–543PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Busquets-Garcia A, Gomis-Gonzalez M, Guegan T, Agustin-Pavon C, Pastor A, Mato S et al (2013) Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 19(5):603–607PubMedCrossRefGoogle Scholar
  67. 67.
    Volk DW, Lewis DA (2016) The role of endocannabinoid signaling in cortical inhibitory neuron dysfunction in schizophrenia. Biol Psychiatry 79(7):595–603PubMedCrossRefGoogle Scholar
  68. 68.
    Allen E (1912) The cessation of mitosis in the central nervous system of the albino rat. J Comp Neurol 19:547–568Google Scholar
  69. 69.
    Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73PubMedCrossRefGoogle Scholar
  70. 70.
    Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591PubMedCrossRefGoogle Scholar
  71. 71.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335PubMedCrossRefGoogle Scholar
  72. 72.
    Kaplan MS (1981) Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 195(2):323–338Google Scholar
  73. 73.
    Kaplan MS (1983) Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors. J Hirnforsch 24(1):23–33Google Scholar
  74. 74.
    Kaplan MS (2001) Environment complexity stimulates visual cortex neurogenesis: death of a dogma and a research career. Trends Neurosci 24(10):617–620Google Scholar
  75. 75.
    Eriksson PS, Perfilieva E, BjörkEriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317Google Scholar
  76. 76.
    Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kempermann G (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci 31(4):163–169PubMedCrossRefGoogle Scholar
  78. 78.
    Suh H, Deng W, Gage FH (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25:253–275PubMedCrossRefGoogle Scholar
  79. 79.
    Chaker Z, George C, Petrovska M, Caron JB, Lacube P, Caille I et al (2016) Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging 41:64–72PubMedCrossRefGoogle Scholar
  80. 80.
    Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452PubMedCrossRefGoogle Scholar
  81. 81.
    Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  82. 82.
    Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  83. 83.
    Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193PubMedCrossRefGoogle Scholar
  84. 84.
    Lledo PM, Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28(5):248–254PubMedCrossRefGoogle Scholar
  85. 85.
    Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26(41):10508–10513PubMedCrossRefGoogle Scholar
  86. 86.
    Fogaça MV, Galve-Roperh I, Guimaraes FS, Campos AC (2013) Cannabinoids, neurogenesis and antidepressant drugs: is there a link? Curr Neuropharmacol 11(3):263–275PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Opendak M, Gould E (2015) Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci 19(3):151–161PubMedCrossRefGoogle Scholar
  88. 88.
    Coras R, Siebzehnrubl FA, Pauli E, Huttner HB, Njunting M, Kobow K et al (2010) Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain 133(11):3359–3372PubMedCrossRefGoogle Scholar
  89. 89.
    Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2(3):260–265PubMedCrossRefGoogle Scholar
  90. 90.
    Kempermann G, Gage FH (2002) Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 16(1):129–136PubMedCrossRefGoogle Scholar
  91. 91.
    Kee NJ, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136(3):313–320PubMedCrossRefGoogle Scholar
  92. 92.
    Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 27(12):3252–3259PubMedCrossRefGoogle Scholar
  93. 93.
    Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 98(22):12796–12801PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809PubMedCrossRefGoogle Scholar
  95. 95.
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Besnard A, Sahay A (2016) Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology 41(1):24–44Google Scholar
  97. 97.
    Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70(4):582–588PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rolls ET (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Egeland M, Zunszain PA, Pariante CM (2015) Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 16(4):189–200PubMedCrossRefGoogle Scholar
  100. 100.
    David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G et al (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115(11):3104–3116PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Marchalant Y, Brothers HM, Wenk GL (2009) Cannabinoid agonist WIN-55,212-2 partially restores neurogenesis in the aged rat brain. Mol Psychiatry 14(12):1068–1069PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, De Filippis D et al (2011) Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS One 6(12):e28668PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hill MN, Kambo JS, Sun JC, Gorzalka BB, Galea LA (2006) Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur J Neurosci 24(7):1845–1849PubMedCrossRefGoogle Scholar
  105. 105.
    Jenniches I, Ternes S, Albayram O, Otte DM, Bach K, Bindila L et al (2016) Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol Psychiatry 79(10):858–868PubMedCrossRefGoogle Scholar
  106. 106.
    Lee S, Kim DH, Yoon SH, Ryu JH (2009) Sub-chronic administration of rimonabant causes loss of antidepressive activity and decreases doublecortin immunoreactivity in the mouse hippocampus. Neurosci Lett 467(2):111–116PubMedCrossRefGoogle Scholar
  107. 107.
    Jin K, Xie L, Kim SH, Parmentier-Batteur S, Sun Y, Mao XO et al (2004) Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice. Mol Pharmacol 66(2):204–208PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang Z, Wang W, Zhong P, Liu SJ, Long JZ, Zhao L et al (2015) Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity. Hippocampus 25(1):16–26PubMedCrossRefGoogle Scholar
  109. 109.
    Yang LC, Guo H, Zhou H, Suo DQ, Li WJ, Zhou Y et al (2015) Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia. Biochem Pharmacol 94(4):270–281PubMedCrossRefGoogle Scholar
  110. 110.
    Rivera P, Blanco E, Bindila L, Alen F, Vargas A, Rubio L et al (2015) Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain. Front Cell Neurosci 9:379PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alline C. Campos
    • 1
    Email author
  • Juan Paraíso-Luna
    • 2
    • 3
  • Manoela V. Fogaça
    • 1
  • Francisco S. Guimarães
    • 1
  • Ismael Galve-Roperh
    • 2
    • 3
  1. 1.Department of PharmacologyMedical School of Ribeirão Preto, University of São PauloRibeirão PretoBrazil
  2. 2.Department of Biochemistry and Molecular Biology ISchool of Biology, Complutense University, and Neurochemistry Universitary Research InstituteMadridSpain
  3. 3.CIBERNED, Center for Networked Biomedical Research in Neurodegenerative DiseasesMadridSpain

Personalised recommendations