Skip to main content

Cannabinoids as Regulators of Neural Development and Adult Neurogenesis

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Abstract

Neurogenesis plays an indispensable role in the formation of the nervous system during development. The discovery that the adult brain still maintains neurogenic niches that allow the continued production of new cells after birth has changed the field of neuroscience. It has also opened a new venue of opportunities for the treatment of central nervous system disorders related to neuronal loss. This chapter has reviewed the studies showing that genetic or pharmacological manipulation of cannabinoid receptors (CB1 and CB2) or the enzymes responsible for endocannabinoid metabolism modify/regulate cell proliferation and neurogenesis during development and in the adult brain. A better characterization of the mechanisms involved in these effects could contribute to the development of new therapeutic alternatives to neurodegenerative and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AG:

2-arachidonoylglycerol

AEA:

Anandamide

Ca2+ :

Calcium

CB1 :

Cannabinoid receptor type 1

CB2 :

Cannabinoid receptor type 2

CBD:

Cannabidiol

DAGL:

Diacylglycerol lipase

DG:

Dentate gyrus

E/I:

Excitation/inhibition

ECB:

Endocannabinoids

MAGL:

Monoacylglycerol lipase

NP:

Neural progenitor

SGZ:

Subgranular zone

SVZ:

Subventricular zone

THC:

Δ9-tetrahydrocannabinol

References

  1. Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51

    Article  CAS  Google Scholar 

  2. Mechoulam R, Lander N, Varkony TH, Kimmel I, Becker O, Ben-Zvi Z et al (1980) Stereochemical requirements for cannabinoid activity. J Med Chem 23(10):1068–1072

    Article  CAS  PubMed  Google Scholar 

  3. Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34(5):605–613

    CAS  PubMed  Google Scholar 

  4. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    Article  CAS  PubMed  Google Scholar 

  5. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    Article  CAS  PubMed  Google Scholar 

  6. Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14(9):923–930

    Article  CAS  PubMed  Google Scholar 

  7. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature (London) 365:61–65

    Article  CAS  Google Scholar 

  8. Lisboa SF, Gomes FV, Guimaraes FS, Campos AC (2016) Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Front Neurol 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA et al (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  CAS  PubMed  Google Scholar 

  10. Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzman M, Galve-Roperh I (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20(13):2405–2407

    Article  CAS  PubMed  Google Scholar 

  11. Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631

    Article  PubMed  Google Scholar 

  12. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949

    Article  CAS  PubMed  Google Scholar 

  13. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90

    Article  CAS  PubMed  Google Scholar 

  14. Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T (2014) Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 15(12):786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365

    Article  CAS  Google Scholar 

  16. Diana MA, Marty A (2004) Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 142(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410(6828):588–592

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci 22(5):1690–1697

    CAS  PubMed  Google Scholar 

  19. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88

    Article  CAS  PubMed  Google Scholar 

  20. Galve-Roperh I, Chiurchiu V, Diaz-Alonso J, Bari M, Guzman M, Maccarrone M (2013) Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52(4):633–650

    Article  CAS  PubMed  Google Scholar 

  21. Rubino T, Parolaro D (2016) The impact of exposure to cannabinoids in adolescence: insights from animal models. Biol Psychiatry 79(7):578–585

    Article  CAS  PubMed  Google Scholar 

  22. Begbie J, Doherty P, Graham A (2004) Cannabinoid receptor, CB1, expression follows neuronal differentiation in the early chick embryo. J Anat 205(3):213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Romero J, Garcia-Palomero E, Berrendero F, Garcia-Gil L, Hernandez ML, Ramos JA et al (1997) Atypical location of cannabinoid receptors in white matter areas during rat brain development. Synapse 26(3):317–323

    Article  CAS  PubMed  Google Scholar 

  24. Maison P, Walker DJ, Walsh FS, Williams G, Doherty P (2009) BDNF regulates neuronal sensitivity to endocannabinoids. Neurosci Lett 467(2):90–94

    Article  CAS  PubMed  Google Scholar 

  25. Eggan SM, Lazarus MS, Stoyak SR, Volk DW, Glausier JR, Huang ZJ et al (2012) Cortical glutamic acid decarboxylase 67 deficiency results in lower cannabinoid 1 receptor messenger RNA expression: implications for schizophrenia. Biol Psychiatry 71(2):114–119

    Article  CAS  PubMed  Google Scholar 

  26. Blazquez C, Chiarlone A, Sagredo O, Aguado T, Pazos MR, Resel E et al (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain 134(Pt 1):119–136

    Article  PubMed  Google Scholar 

  27. Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B et al (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB J 19(12):1704–1706

    CAS  PubMed  Google Scholar 

  28. Butti E, Bacigaluppi M, Rossi S, Cambiaghi M, Bari M, Cebrian Silla A et al (2012) Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. Brain 135(Pt 11):3320–3335

    Article  PubMed  Google Scholar 

  29. Rubio-Araiz A, Arevalo-Martin A, Gomez-Torres O, Navarro-Galve B, Garcia-Ovejero D, Suetterlin P et al (2008) The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Mol Cell Neurosci 38(3):374–380

    Article  CAS  PubMed  Google Scholar 

  30. Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G et al (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M et al (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30(6):2017–2024

    Article  CAS  PubMed  Google Scholar 

  32. Goncalves MB, Suetterlin P, Yip P, Molina-Holgado F, Walker DJ, Oudin MJ et al (2008) A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci 38(4):526–536

    Article  CAS  PubMed  Google Scholar 

  33. Campos AC, Ortega Z, Palazuelos J, Fogaca MV, Aguiar DC, Diaz-Alonso J et al (2013) The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol 16(6):1407–1419

    Article  CAS  PubMed  Google Scholar 

  34. Walker DJ, Suetterlin P, Reisenberg M, Williams G, Doherty P (2010) Down-regulation of diacylglycerol lipase-alpha during neural stem cell differentiation: identification of elements that regulate transcription. J Neurosci Res 88(4):735–745

    CAS  PubMed  Google Scholar 

  35. Jung KM, Astarita G, Thongkham D, Piomelli D (2011) Diacylglycerol lipase-alpha and -beta control neurite outgrowth in neuro-2a cells through distinct molecular mechanisms. Mol Pharmacol 80(1):60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palazuelos J, Ortega Z, Diaz-Alonso J, Guzman M, Galve-Roperh I (2012) CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J Biol Chem 287(2):1198–1209

    Article  CAS  PubMed  Google Scholar 

  37. Prenderville JA, Kelly AM, Downer EJ (2015) The role of cannabinoids in adult neurogenesis. Br J Pharmacol 172(16):3950–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Díaz-Alonso J, Aguado T, de Salas-Quiroga A, Ortega Z, Guzman M, Galve-Roperh I (2015) CB1 cannabinoid receptor-dependent activation of mTORC1/Pax6 signaling drives Tbr2 expression and basal progenitor expansion in the developing mouse cortex. Cereb Cortex 25(9):2395–2408

    Article  PubMed  Google Scholar 

  39. Díaz-Alonso J, Aguado T, Wu CS, Palazuelos J, Hofmann C, Garcez P, et al. The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 2012a;32(47):16651–65

    Google Scholar 

  40. Bromberg KD, Ma'ayan A, Neves SR, Iyengar R (2008) Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 320(5878):903–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Díaz-Alonso J, Guzman M, Galve-Roperh I. Endocannabinoids via CB(1) receptors act as neurogenic niche cues during cortical development. Philos Trans R Soc Lond B Biol Sci 2012b;367(1607):3229-41

    Google Scholar 

  42. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14(11):755–769

    Article  CAS  PubMed  Google Scholar 

  43. Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM et al (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316(5828):1212–1216

    Article  CAS  PubMed  Google Scholar 

  44. Keimpema E, Barabas K, Morozov YM, Tortoriello G, Torii M, Cameron G et al (2010) Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding. J Neurosci 30(42):13992–14007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Argaw A, Duff G, Zabouri N, Cecyre B, Chaine N, Cherif H et al (2011) Concerted action of CB1 cannabinoid receptor and deleted in colorectal cancer in axon guidance. J Neurosci 31(4):1489–1499

    Article  CAS  PubMed  Google Scholar 

  46. Njoo C, Agarwal N, Lutz B, Kuner R (2015) The cannabinoid receptor CB1 interacts with the WAVE1 complex and plays a role in actin dynamics and structural plasticity in neurons. PLoS Biol 13(10):e1002286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Roland AB, Ricobaraza A, Carrel D, Jordan BM, Rico F, Simon A et al (2014) Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. Elife 3:e03159

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mulder J, Aguado T, Keimpema E, Barabas K, Ballester Rosado CJ, Nguyen L et al (2008) Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc Natl Acad Sci U S A 105(25):8760–8765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu CS, Zhu J, Wager-Miller J, Wang S, O'Leary D, Monory K et al (2010) Requirement of cannabinoid CB(1) receptors in cortical pyramidal neurons for appropriate development of corticothalamic and thalamocortical projections. Eur J Neurosci 32(5):693–706

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aguado T, Palazuelos J, Monory K, Stella N, Cravatt B, Lutz B et al (2006) The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. J Neurosci 26(5):1551–1561

    Article  CAS  PubMed  Google Scholar 

  51. Gomez O, Sanchez-Rodriguez A, Le M, Sanchez-Caro C, Molina-Holgado F, Molina-Holgado E (2011) Cannabinoid receptor agonists modulate oligodendrocyte differentiation by activating PI3K/Akt and the mammalian target of rapamycin (mTOR) pathways. Br J Pharmacol 163(7):1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E (2010) The endocannabinoid 2-arachidonoylglycerol reduces lesion expansion and white matter damage after spinal cord injury. Neurobiol Dis 38(2):304–312

    Article  CAS  PubMed  Google Scholar 

  53. Tomas-Roig J, Wirths O, Salinas-Riester G, Havemann-Reinecke U (2016) The cannabinoid CB1/CB2 agonist WIN55212.2 promotes oligodendrocyte differentiation in vitro and neuroprotection during the cuprizone-induced central nervous system demyelination. CNS Neurosci Ther 22(5):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alpár A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J et al (2014) Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun 5:4421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Di Marzo V, Stella N, Zimmer A (2015) Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 16(1):30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Psychoyos D, Hungund B, Cooper T, Finnell RH (2008) A cannabinoid analogue of Delta9-tetrahydrocannabinol disrupts neural development in chick. Birth Defects Res B Dev Reprod Toxicol 83(5):477–488

    Article  CAS  PubMed  Google Scholar 

  57. Saez TM, Aronne MP, Caltana L, Brusco AH (2014) Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex. J Neurochem 129(4):637–648

    Article  CAS  PubMed  Google Scholar 

  58. Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16(5):264–277

    Article  CAS  PubMed  Google Scholar 

  59. de Salas-Quiroga A, Diaz-Alonso J, Garcia-Rincon D, Remmers F, Vega D, Gomez-Canas M et al (2015) Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons. Proc Natl Acad Sci U S A 112(44):13693–13698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ruehle S, Remmers F, Romo-Parra H, Massa F, Wickert M, Wortge S et al (2013) Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions. J Neurosci 33(25):10264–10277

    Article  CAS  PubMed  Google Scholar 

  61. Tortoriello G, Morris CV, Alpar A, Fuzik J, Shirran SL, Calvigioni D et al (2014) Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J 33(7):668–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oudin MJ, Gajendra S, Williams G, Hobbs C, Lalli G, Doherty P (2011) Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 31(11):4000–4011

    Google Scholar 

  63. Vargish GA, Pelkey KA, Yuan X, Chittajallu R, Collins D, Fang C et al (2016) Persistent inhibitory circuit defects and disrupted social behaviour following in utero exogenous cannabinoid exposure. Mol Psychiatry

    Google Scholar 

  64. Földy C, Malenka RC, Sudhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78(3):498–509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cass DK, Flores-Barrera E, Thomases DR, Vital WF, Caballero A, Tseng KY (2014) CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol Psychiatry 19(5):536–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Busquets-Garcia A, Gomis-Gonzalez M, Guegan T, Agustin-Pavon C, Pastor A, Mato S et al (2013) Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 19(5):603–607

    Article  CAS  PubMed  Google Scholar 

  67. Volk DW, Lewis DA (2016) The role of endocannabinoid signaling in cortical inhibitory neuron dysfunction in schizophrenia. Biol Psychiatry 79(7):595–603

    Article  CAS  PubMed  Google Scholar 

  68. Allen E (1912) The cessation of mitosis in the central nervous system of the albino rat. J Comp Neurol 19:547–568

    Google Scholar 

  69. Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    Article  CAS  PubMed  Google Scholar 

  70. Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591

    Article  CAS  PubMed  Google Scholar 

  71. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    Article  CAS  PubMed  Google Scholar 

  72. Kaplan MS (1981) Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 195(2):323–338

    Google Scholar 

  73. Kaplan MS (1983) Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors. J Hirnforsch 24(1):23–33

    Google Scholar 

  74. Kaplan MS (2001) Environment complexity stimulates visual cortex neurogenesis: death of a dogma and a research career. Trends Neurosci 24(10):617–620

    Google Scholar 

  75. Eriksson PS, Perfilieva E, BjörkEriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Google Scholar 

  76. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kempermann G (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci 31(4):163–169

    Article  CAS  PubMed  Google Scholar 

  78. Suh H, Deng W, Gage FH (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25:253–275

    Article  CAS  PubMed  Google Scholar 

  79. Chaker Z, George C, Petrovska M, Caron JB, Lacube P, Caille I et al (2016) Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging 41:64–72

    Article  CAS  PubMed  Google Scholar 

  80. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452

    Article  CAS  PubMed  Google Scholar 

  81. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  82. Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  CAS  PubMed  Google Scholar 

  83. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193

    Article  CAS  PubMed  Google Scholar 

  84. Lledo PM, Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28(5):248–254

    Article  CAS  PubMed  Google Scholar 

  85. Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26(41):10508–10513

    Article  CAS  PubMed  Google Scholar 

  86. Fogaça MV, Galve-Roperh I, Guimaraes FS, Campos AC (2013) Cannabinoids, neurogenesis and antidepressant drugs: is there a link? Curr Neuropharmacol 11(3):263–275

    Article  PubMed  PubMed Central  Google Scholar 

  87. Opendak M, Gould E (2015) Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci 19(3):151–161

    Article  PubMed  Google Scholar 

  88. Coras R, Siebzehnrubl FA, Pauli E, Huttner HB, Njunting M, Kobow K et al (2010) Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain 133(11):3359–3372

    Article  PubMed  Google Scholar 

  89. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2(3):260–265

    Article  CAS  PubMed  Google Scholar 

  90. Kempermann G, Gage FH (2002) Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 16(1):129–136

    Article  CAS  PubMed  Google Scholar 

  91. Kee NJ, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136(3):313–320

    Article  CAS  PubMed  Google Scholar 

  92. Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 27(12):3252–3259

    Article  CAS  PubMed  Google Scholar 

  93. Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 98(22):12796–12801

    Article  PubMed  PubMed Central  Google Scholar 

  94. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    Article  CAS  PubMed  Google Scholar 

  95. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Besnard A, Sahay A (2016) Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology 41(1):24–44

    Google Scholar 

  97. Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70(4):582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rolls ET (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  99. Egeland M, Zunszain PA, Pariante CM (2015) Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 16(4):189–200

    Article  CAS  PubMed  Google Scholar 

  100. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G et al (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115(11):3104–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marchalant Y, Brothers HM, Wenk GL (2009) Cannabinoid agonist WIN-55,212-2 partially restores neurogenesis in the aged rat brain. Mol Psychiatry 14(12):1068–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, De Filippis D et al (2011) Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS One 6(12):e28668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hill MN, Kambo JS, Sun JC, Gorzalka BB, Galea LA (2006) Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur J Neurosci 24(7):1845–1849

    Article  PubMed  Google Scholar 

  105. Jenniches I, Ternes S, Albayram O, Otte DM, Bach K, Bindila L et al (2016) Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol Psychiatry 79(10):858–868

    Article  CAS  PubMed  Google Scholar 

  106. Lee S, Kim DH, Yoon SH, Ryu JH (2009) Sub-chronic administration of rimonabant causes loss of antidepressive activity and decreases doublecortin immunoreactivity in the mouse hippocampus. Neurosci Lett 467(2):111–116

    Article  CAS  PubMed  Google Scholar 

  107. Jin K, Xie L, Kim SH, Parmentier-Batteur S, Sun Y, Mao XO et al (2004) Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice. Mol Pharmacol 66(2):204–208

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Z, Wang W, Zhong P, Liu SJ, Long JZ, Zhao L et al (2015) Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity. Hippocampus 25(1):16–26

    Article  PubMed  CAS  Google Scholar 

  109. Yang LC, Guo H, Zhou H, Suo DQ, Li WJ, Zhou Y et al (2015) Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia. Biochem Pharmacol 94(4):270–281

    Article  CAS  PubMed  Google Scholar 

  110. Rivera P, Blanco E, Bindila L, Alen F, Vargas A, Rubio L et al (2015) Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain. Front Cell Neurosci 9:379

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Franciele Scarante for her technical support on design and graphic art of Figs. 6.1 and 6.3, and members of our research groups for an inspiring scientific environment. ACC and FSG are recipients of FAPESP grants. IGR research is funded by PI15-00310, RTC-2015-3364-1, and S2011-BMD-2336 supported by the Instituto de Salud Carlos III, Mineco (Plan Estatal de I+D+i 2013-2016) and Comunidad de Madrid. Research was cofinanced by the European Development Regional Fund “A way to achieve Europe” (ERDF). JPL is a recipient of FPU (Ministerio de Educación) fellowship. MVF is recipient of a CAPES fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alline C. Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Campos, A.C., Paraíso-Luna, J., Fogaça, M.V., Guimarães, F.S., Galve-Roperh, I. (2017). Cannabinoids as Regulators of Neural Development and Adult Neurogenesis. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_6

Download citation

Publish with us

Policies and ethics