Temporal Analysis of Comparative Opinion Mining

  • Kasturi Dewi VarathanEmail author
  • Anastasia Giachanou
  • Fabio Crestani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10075)


Social media have become a popular platform for people to share their opinions and emotions. Analyzing opinions that are posted on the web is very important since they influence future decisions of organizations and people. Comparative opinion mining is a subfield of opinion mining that deals with identifying and extracting information that is expressed in a comparative form. Due to the fact that there is a huge amount of opinions posted online everyday, analyzing comparative opinions from a temporal perspective is an important application that needs to be explored. This study introduces the idea of integrating temporal elements in comparative opinion mining. Different type of results can be obtained from the temporal analysis, including trend analysis, competitive analysis as well as burst detection. In our study we show that temporal analysis of comparative opinion mining provides more current and relevant information to users compared to standard opinion mining.


Temporal analysis Comparative opinion mining 



This research was partially funded by Swiss Secretariat of Education, Research and Innovation (SERI).


  1. 1.
    Adams, A., Blandford, A.: Digital libraries’ support for the user’s information journey. In: Proceedings of the JCDL2005, pp. 160–169. ACM (2005)Google Scholar
  2. 2.
    Aggarwal, C.C., Zhai, C. (eds.): Mining Text Data. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Alves, A.L.F., Baptista, C.S., Firmino, A.A., Oliveira, M.G., Figueirêdo, H.F.: Temporal analysis of sentiment in tweets: a case study with FIFA confederations cup in Brazil. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014. LNCS, vol. 8644, pp. 81–88. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10073-9_7 Google Scholar
  4. 4.
    Bjørkelund, E., Burnett, T.H.: Temporal Opinion Mining. Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway (2012)Google Scholar
  5. 5.
    Branavan, S., Chen, H., Eisenstein, J., Barzilay, R.: Learning document-level semantic properties from free-text annotations. J. Artif. Intell. Res. 34, 569–603 (2009)zbMATHGoogle Scholar
  6. 6.
    Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: Proceedings of the ICWSM 2011, vol. 2011, pp. 81–88. AAAI Press (2011)Google Scholar
  7. 7.
    DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F.: More tweets, more votes: social media as a quantitative indicator of political behavior. PLoS ONE 8(11), e79449 (2013)CrossRefGoogle Scholar
  8. 8.
    Figueirêdo, H.F., Lacerda, Y.A., Paiva, A.C., Casanova, M.A., de Souza Baptista, C.: PhotoGeo: a photo digital library with spatial-temporal support and self-annotation. Multimed. Tools Appl. 59(1), 279–305 (2012)CrossRefGoogle Scholar
  9. 9.
    Fujimoto, K.: Investigation of potency-magnitude relations of eWOM messages with a focus on intensified comparative expressions. In: Proceedings of the ICCI*CC 2012, pp. 163–173. IEEE (2012)Google Scholar
  10. 10.
    Gu, Y.H., Yoo, S.J.: Searching a best product based on mining comparison sentences. In: Proceedings of the SCIS & ISIS 2010, vol. 2010, pp. 929–933. Japan Society for Fuzzy Theory and Intelligent Informatics (2010)Google Scholar
  11. 11.
    He, S., Yuan, F., Wang, Y.: Extracting the comparative relations for mobile reviews. In: Proceedings of the CECNet 2012, pp. 3247–3250. IEEE (2012)Google Scholar
  12. 12.
    He, W., Zha, S., Li, L.: Social media competitive analysis and text mining: a case study in the pizza industry. Int. J. Inf. Manage. 33(3), 464–472 (2013)CrossRefGoogle Scholar
  13. 13.
    Jindal, N., Liu, B.: Identifying comparative sentences in text documents. In: Proceedings of the SIGIR 2006, pp. 244–251. ACM (2006)Google Scholar
  14. 14.
    Jindal, N., Liu, B.: Mining comparative sentences and relations. In: Proceedings of the AAAI 2006. pp. 1331–1336. AAAI Press (2006)Google Scholar
  15. 15.
    Jurgens, D., Lu, T.C.: Temporal motifs reveal the dynamics of editor interactions in wikipedia. In: Proceedings of the ICWSM 2012, pp. 162–169. AAAI Press (2012)Google Scholar
  16. 16.
    Keikha, M., Gerani, S., Crestani, F.: Time-based relevance models. In: Proceedings of the SIGIR 2011, pp. 1087–1088. ACM (2011)Google Scholar
  17. 17.
    Kessler, W., Kuhn, J.: Detection of product comparisons-how far does an out-of-the-box semantic role labeling system take you? In: Proceedings of the EMNLP 2013, pp. 1892–1897. ACL (2013)Google Scholar
  18. 18.
    Kessler, W., Kuhn, J.: A corpus of comparisons in product reviews. In: Proceedings of the LREC 2014, pp. 2242–2248. European Language Resources Association (ELRA) (2014)Google Scholar
  19. 19.
    Kurashima, T., Bessho, K., Toda, H., Uchiyama, T., Kataoka, R.: Ranking entities using comparative relations. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 124–133. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85654-2_15 CrossRefGoogle Scholar
  20. 20.
    Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, C., Xu, R., Liu, J., Qu, P., Wang, H., Zou, C.: Comparative opinion sentences identification and elements extraction. In: Proceedings of the ICMLC 2013, vol. 4, pp. 1886–1891. IEEE (2013)Google Scholar
  22. 22.
    Maynard, D., Gossen, G., Funk, A., Fisichella, M.: Should i care about your opinion? Detection of opinion interestingness and dynamics in social media. Future Internet 6(3), 457–481 (2014)CrossRefGoogle Scholar
  23. 23.
    Mehmood, A., Palli, A.S., Khan, M.: A study of sentiment and trend analysis techniques for social media content. Int. J. Modern Educ. Comput. Sci. (IJMECS) 6(12), 47 (2014)CrossRefGoogle Scholar
  24. 24.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the ICWSM 2010, no. 122–129. AAAI Press (2010)Google Scholar
  25. 25.
    Romero, D.M., Galuba, W., Asur, S., Huberman, B.A.: Influence and passivity in social media. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 18–33. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23808-6_2 CrossRefGoogle Scholar
  26. 26.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)CrossRefGoogle Scholar
  27. 27.
    Sun, J., Long, C., Zhu, X., Huang, M.: Mining reviews for product comparison and recommendation. Polibits 39, 33–40 (2009)CrossRefGoogle Scholar
  28. 28.
    Tivy, A., Howell, S.E., Alt, B., McCourt, S., Chagnon, R., Crocker, G., Carrieres, T., Yackel, J.J.: Trends and variability in summer sea ice cover in the Canadian arctic based on the Canadian ice service digital archive, 1960–2008 and 1968–2008. J. Geophys. Res. Oceans 116(C3) (2011). doi: 10.1029/2009JC005855
  29. 29.
    Tkachenko, M., Lauw, H.W.: Generative modeling of entity comparisons in text. In: Proceedings of the CIKM 2014, pp. 859–868. ACM (2014)Google Scholar
  30. 30.
    Tremayne, M.: Anatomy of protest in the digital era: a network analysis of twitter and occupy wall street. Soc. Mov. Stud. 13(1), 110–126 (2014)CrossRefGoogle Scholar
  31. 31.
    Tu, W., Cheung, D., Mamoulis, N.: Time-sensitive opinion mining for prediction. In: Proceedings of the AAAI 2015. AAAI Press (2015)Google Scholar
  32. 32.
    Varathan, K.D., Giachanou, A., Crestani, F.: Comparative opinion mining: a review. J. Assoc. Inf. Sci. Technol. (2016, in press)Google Scholar
  33. 33.
    Wang, G., Xie, S., Liu, B., Yu, P.S.: Identify online store review spammers via social review graph. ACM Trans. Intell. Syst. Technol. 3(4), 61:1–61:21 (2012)Google Scholar
  34. 34.
    Wang, W., Zhao, T., Xin, G., Xu, Y.: Exploiting machine learning for comparative sentences extraction. Int. J. Hybrid Inf. Technol. 8(3), 347–354 (2015)CrossRefGoogle Scholar
  35. 35.
    Xu, K., Liao, S.S., Li, J., Song, Y.: Mining comparative opinions from customer reviews for competitive intelligence. Decis. Support Syst. 50(4), 743–754 (2011)CrossRefGoogle Scholar
  36. 36.
    Zhou, X., Tao, X., Yong, J., Yang, Z.: Sentiment analysis on tweets for social events. In: Proceedings of the CSCWD 2013, pp. 557–562. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kasturi Dewi Varathan
    • 1
    Email author
  • Anastasia Giachanou
    • 2
  • Fabio Crestani
    • 2
  1. 1.Department of Information System, Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of InformaticsUniversità Della Svizzera Italiana (USI)LuganoSwitzerland

Personalised recommendations