Skip to main content

Spacecraft and Instrumentation

  • Chapter
  • First Online:
The Near-Saturn Magnetic Field Environment

Part of the book series: Springer Theses ((Springer Theses))

  • 329 Accesses

Abstract

The new scientific work in this thesis stems from data gathered and returned to Earth by the Cassini-Huygens spacecraft. Onboard the spacecraft is a suite of in situ instruments making field, particle and wave measurements for studying dust, plasma and magnetic fields around Saturn. There are also suites of optical remote sensing instruments (e.g. UV and infrared imaging) for studying Saturn’s aurora and microwave remote sensing instruments (e.g. radar) for mapping Saturn’s atmosphere and its moons’ surfaces. Figure 3.1 shows where each of the twelve instruments are located on the spacecraft. The data presented and interpreted in these studies are principally from Cassini’s Fluxgate Magnetometer (MAG) (Dougherty et al. 2004) with supporting data from the Radio and Plasma Wave Science (RPWS) (Gurnett et al. 2004) and Ion Mass Spectrometer (IMS) (Young et al. 2004). In this chapter, we will begin with a brief overview of the mission and then describe the instruments used.

This chapter is an enhanced version of a chapter from and original PhD thesis which is available Open Access from the repository https://spiral.imperial.ac.uk/ of Imperial College London. The original chapter was distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommercial use, duplication, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author and the source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do not have permission under this license to share adapted material derived from this book or parts of it. The Creative Commence license does not apply to this enhanced chapter, but only to the original chapter of the thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña MH (2002) Space-based magnetometers. Rev Sci Instrum 73:3717–3736. Doi:10.1063/1.1510570

  • Acuña MH, Ness NF (1980) The magnetic field of Saturn—Pioneer 11 observations. Science 207:444–446. Doi:10.1126/science.207.4429.444

  • Balogh A et al (1992) The magnetic field investigation on the ULYSSES mission—instrumentation and preliminary scientific results. Astron Astrophys 92:221–236

    ADS  Google Scholar 

  • Belcher JW (1973) A variation of the Davis-Smith method for in-flight determination of spacecraft magnetic fields. J Geophys Res 78:6840–6490. Doi:10.1029/JA078i028p06480

  • Burton ME et al (2001) The Cassini/Huygens Venus and earth flybys: an overview of operations and results. J Geophys Res 106:30099–30108. doi:10.1029/2001JA900088

    Article  ADS  Google Scholar 

  • Dougherty MK et al (2004) The Cassini magnetic field investigation. Space Sci Rev 114(1–4):331–383. Doi:10.1007/s11214-004-1432-2

  • Dougherty MK et al (2006) Identification of a dynamic atmosphere at enceladus with the cassini magnetometer. Science 311:1406–1409. Doi:10.1126/science.1120985

  • Dunlop MW (1999) Operation of the dual magnetometer on Cassini: science performance. Planet Space Sci 47:1389–1405. Doi:10.1016/S0032-0633(99)00060-4

  • Espinosa SA, Dougherty MK (2000) Periodic perturbations in Saturn’s magnetic field. Geophys Res Lett 27:2785–2788. Doi:10.1029/2000GL000048

  • Goldstein ML et al (1995) Magnetohydrodynamic turbulence in the solar wind. Astron Astrophys 33:283. Doi:10.1146/annurev.aa.33.090195.001435

  • Gurnett DA et al (2004) The Cassini radio and plasma wave investigation. Space Sci Rev 114(1–4):395–463. Doi:10.1007/s11214-004-1434-0

  • Kellock S et al (1996) Cassini dual technique magnetometer instrument (MAG). SPIE 2803:141–152

    ADS  Google Scholar 

  • Klein LE, Burlaga LF (1982) Interplanetary magnetic clouds at 1 AU. J Geophys Res 87:613–624. Doi:10.1029/JA087iA02p00613

  • Ness NF et al (1981) Magnetic field studies by Voyager 1—preliminary results at Saturn. Science 212:211–217. Doi:10.1126/science.212.4491.211

  • Porco CC et al (2005) Imagine of titan from the Cassini spacecraft. Nature 434:159–168. Doi:10.1038/nature03436

  • Smith BA et al (1982) A new look at the Saturn system —the Voyager 2 images. Science 215:504–537. Doi:10.1126/science.215.4532.504

  • Young DT et al (2004). Cassini plasma spectrometer investigation. Space Sci Rev 114(1–4):1–112. Doi:10.1007/s11214-004-1406-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haidar Sulaiman .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sulaiman, A.H. (2017). Spacecraft and Instrumentation. In: The Near-Saturn Magnetic Field Environment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-49292-6_3

Download citation

Publish with us

Policies and ethics