Skip to main content

The Sun-Saturn Connection

  • Chapter
  • First Online:
The Near-Saturn Magnetic Field Environment

Part of the book series: Springer Theses ((Springer Theses))

  • 327 Accesses

Abstract

This chapter summarises the large-scale structure and average properties of the solar wind in the near-Saturn environment. An introduction to Saturn’s magnetosphere will follow, emphasising on its uniqueness in parameter range and from which the motivation of this thesis is derived.

This chapter is an enhanced version of a chapter from and original PhD thesis which is available Open Access from the respository https://spiral.imperial.ac.uk/ of Imperial College London. The original chapter was distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommercial use, duplication, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author and the source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do not have permission under this license to share adapted material derived from this book or parts of it. The Creative Commence license does not apply to this enhanced chapter, but only to the original chapter of the thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilleos N et al (2006) Orientation, location, and velocity of Saturn’s bow shock: initial results from the Cassini spacecraft. J Geophys Res 111:3201. Doi:10.1029/2005JA011297

  • Achilleos N et al (2008), Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J Geophys Res 113:A11209. Doi:10.1029/2008JA013265

  • Acuña MH, Ness NF (1980) The magnetic field of Saturn—Pioneer 11 observations. Science 207:444–446. Doi:10.1126/science.207.4429.444

  • Arridge CS et al (2006) Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J Geophys Res 111:A10. Doi:10.1029/2005JA011574

  • Arridge CS et al (2008) Saturn’s magnetodisc current sheet. J Geophys Res 113. Doi:10.1029/2007JA012540

  • Badman SV, Cowley SWH (2007) Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetosphere, and their identification on closed equatorial field lines. Ann Geophys 25:941–951. Doi:10.5194/angeo-25-941-2007

  • Bagenal F (1986) The double tilt of Uranus. Nature 321:809. Doi:10.1038/321809a0

  • Bridge HS et al (1982) Plasma observations near Saturn—Initial results from Voyager 2. Science 215:563–570. Doi:10.1126/science.215.4532.563

  • Bunce EJ et al (2008) Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J Geophys Res 113:A09209. Doi:10.1029/2008JA013257

  • Chapman S, Ferraro VCA (1930) A new theory of magnetic storms. Nature 126:129–130

    Article  ADS  MATH  Google Scholar 

  • Cowley SWH et al (2004) Saturn’s polar ionospheric flows and their relations to the main auroral oval. Ann Geophys 22:1379–1394. Doi:10.5194/angeo-22-1379-2004

  • Crary FJ et al (2005) Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature 433:720–722. Doi:10.1038/nature03333

  • Erkaev NV et al (1996) Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies. J Geophys Res 101:10,665–10,672. Doi:10.1029/95JA03518

  • Farrugia CJ et al (1998) The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters. Planet Space Sci 46:507–514. Doi:10.1016/S0032-0633(97)00225-0

  • Gringauz KI et al (1960) Study of the interplanetary high energy electrons and solar corpuscular radiation by means of three electrode traps for charged particles on the second Soviet cosmic rocket. Soviet Phys Doklady 53:61

    Google Scholar 

  • Guo F, Giacalone J (2015) The acceleration of electrons at collisionless shocks moving through a turbulent magnetic field. Astrophys J 802:97. Doi:10.1088/0004-637X/802/2/97

  • Gurnett DA et al (2013) In situ observations of interstellar plasma with voyager 1. Science 341:1489–1492. Doi:10.1126/science.1241681

  • Henley EM (2010) Scales and variability of Earth’s bow shock. PhD Thesis, Imperial College, London

    Google Scholar 

  • Hill TW(1979) Inertial limit on corotation. J Geophys Res 84:6554–6558. Doi:10.1029/JA084iA11p06554

  • Jackman CM et al (2007) Strong rapid dipolarizations in Saturn’s magnetotail: in situ evidence of reconnection. Geophys Res Lett 34:L11203. Doi:10.1029/2007GL029764

  • Jackman CM et al (2008) The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J Geophys Res 113:8114. Doi:10.1029/2008JA013083

  • Kanani SJ et al (2010) A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J Geophys Res 115:A06207. Doi:10.1029/2009JA014262

  • Kivelson MG, Southwood DJ (2005) Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J Geophys Res 110:A9. Doi:10.1029/2005JA011176

  • Masters A et al (2013) Electron acceleration to relativistic energies at a strong quasi-parallel shock wave. Nat Phys 9:164. Doi:10.1038/nphys2541

  • Murray CD et al (2008) The determination of the structure of Saturn’s F ring by nearby moonlets. Nature 453:739–744. Doi:10.1038/nature06999

  • Ness NF et al (1981) Magnetic field studies by Voyager 1—Preliminary results at Saturn. Science 212:211–217. Doi:10.1126/science.212.4491.211

  • O’Donoghue J et al (2013) The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature 496:193–195. Doi:10.1038/nature12049

  • Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. Astrophys J 128:664–676. Doi:10.1086/146579

  • Russell CT et al (1982) Overshoots in planetary bow shocks. Nature 296:45–48. Doi:10.1038/296045a0

  • Rymer AM et al (2013) Saturn’s magnetospheric refresh rate. Geophys Res Lett 40:2479–2483. Doi:10.1002/grl.50530

  • Sckopke N et al (1983) Evolution of ion distributions across the nearly perpendicular bow shock—Specularly and non-specularly reflected-gyrating ions. J Geophys Res 88:6121–6136. Doi:10.1029/JA088iA08p06121

  • Sibeck DG, Gosling JT (1996) Magnetosheath density fluctuations and magnetopause motion. J Geophys Res 101:31–40. Doi:10.1029/95JA03141

  • Snyder CW, Neugebaur M (1966) The relation of Mariner-2 plasma data to solar phenomena. In: The solar wind, Permanon Press, Oxford, pp 25–32

    Google Scholar 

  • Southwood DJ, Kivelson MG (1989), Magnetospheric interchange motions. J Geophys Res 94:299–307. Doi:10.1029/JA094iA01p00299

  • Southwood DJ, Kivelson MG (1993) Mirror instability. I—Physical mechanism of linear instability. J Geophys Res 98:9181–9187. Doi:10.1029/92JA02837

  • Spreiter JR et al (1966) Hydrodynamic flow around the magnetosphere. Planet Space Sci 14:223–253. Doi:10.1016/0032-0633(66)90124-3

  • Stevenson DJ (1982) Formation of the giant planets. Planet Space Sci 30:755–764. Doi:10.1016/0032-0633(82)90108-8

  • Sulaiman AH et al (2014) The magnetic structure of Saturn’s magnetosheath. J Geophys Res 119:5651–5661. Doi:10.1002/2014JA020019

  • Sulaiman AH et al (2015) Quasi-perpendicular high Mach number shocks. Phys Rev Lett 115. Doi:10.1103/PhysRevLett.115.125001

  • Thomsen MF et al (2013) Saturn’s magnetospheric dynamics. Geophys Res Lett 40:5337–5344. Doi:10.1002/2013GL057967

  • Treumann RA(2009) Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron Astrophys Rev 17:409–535. Doi:10.1007/s00159-009-0024-2

  • Vasyliunas VM (1983) Plasma distribution and flow. In Physics of the Jovian magnetosphere, pp 395–453

    Google Scholar 

  • Violante L et al (1995) Observations of mirror mode waves and plasma depletion layer upstream of Saturn’s magnetopause. J Geophys Res 100(A7):12047–12055. Doi:10.1029/94JA02703

  • Went DR et al (2011) A new semi-empirical model of Saturn’s bow shock based on propagated solar wind parameters. J Geophys Res 116:A07202. Doi:10.1029/2010JA016349

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haidar Sulaiman .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sulaiman, A.H. (2017). The Sun-Saturn Connection. In: The Near-Saturn Magnetic Field Environment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-49292-6_2

Download citation

Publish with us

Policies and ethics