Abstract
We investigate the convergence rates of numerical schemes for degenerate convection diffusion equations. Recent results bound these rates as 1∕3 in one space dimension and 2∕(19 + d) in several space dimension. In our numerical experiments, we obtain much better rates, indicating that the theoretical bounds are not optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (4), 269–361 (1999). MR 1709116 (2000m:35132)
Cockburn, B.: Continuous dependence and error estimation for viscosity methods. Acta Numer. 12, 127–180 (2003). MR 2249155
Ebmeyer, C.: Error estimates for a class of degenerate parabolic equations. SIAM J. Numer. Anal. 35 (3), 1095–1112 (1998) (electronic). MR 1619863
Escobedo, M., Vázquez, J.L., Zuazua, E.: Entropy solutions for diffusion-convection equations with partial diffusivity. Trans. Am. Math. Soc. 343 (2), 829–842 (1994). MR 1225573
Evje, S., Karlsen, K.H.: Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (6), 1838–1860 (2000) (electronic). MR 1766850 (2001g:65110)
Karlsen, K.H., Risebro, N.H., Storrøsten, E.B.: L 1 error estimates for difference approximations of degenerate convection-diffusion equations. Math. Comput. 83 (290), 2717–2762 (2014). MR 3246807
Karlsen, K.H., Risebro, N.H., Storrøsten, E.B.: On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions. ESAIM Math. Model. Numer. Anal. 50 (2), 499–539 (2016). MR 3482553
Kuznetsov, N.N.: The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16 (6), 1489–1502, 1627 (1976). MR 0483509 (58 #3510)
Nessyahu, H., Tadmor, E.: The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Numer. Anal. 29 (6), 1505–1519 (1992). MR 1191133
Nessyahu, H., Tadmor, E., Tassa, T.: The convergence rate of Godunov type schemes. SIAM J. Numer. Anal. 31 (1), 1–16 (1994). MR 1259963
Nochetto, R.H.: Finite element methods for parabolic free boundary problems. In: Advances in Numerical Analysis (Lancaster, 1990), vol. I, pp. 34–95. Oxford Science Publications/Oxford University Press, New York (1991). MR 1138471
Radu, F.A., Pop, I.S., Knabner, P.: Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math. 109 (2), 285–311 (2008). MR 2385655
Şabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34 (6), 2306–2318 (1997). MR 1480382
Teng, Z.-H., Zhang, P.-W.: Optimal L 1-rate of convergence for viscosity method and monotone scheme to piecewise constant solutions with shocks. In: Advances in Numerical Mathematics. Proceedings of the Second Japan-China Seminar on Numerical Mathematics (Tokyo, 1994). Lecture Notes in Numerical and Applied Analysis, vol. 14, pp. 209–225. Kinokuniya, Tokyo (1995). MR 1469007
Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Diffusion Equations. World Scientific Publishing Co., Inc., River Edge (2001); Translated from the 1996 Chinese original and revised by the authors. MR 1881297
Acknowledgements
This work was supported by the Research Council of Norway via grants no. 250674/F20 and 214495.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Karlsen, K.H., Risebro, N.H., Storrøsten, E.B. (2017). Practical Convergence Rates for Degenerate Parabolic Equations. In: Gosse, L., Natalini, R. (eds) Innovative Algorithms and Analysis. Springer INdAM Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-49262-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-49262-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49261-2
Online ISBN: 978-3-319-49262-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)