Skip to main content

Practical Convergence Rates for Degenerate Parabolic Equations

  • Chapter
  • First Online:
Innovative Algorithms and Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 16))

  • 1048 Accesses

Abstract

We investigate the convergence rates of numerical schemes for degenerate convection diffusion equations. Recent results bound these rates as 1∕3 in one space dimension and 2∕(19 + d) in several space dimension. In our numerical experiments, we obtain much better rates, indicating that the theoretical bounds are not optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (4), 269–361 (1999). MR 1709116 (2000m:35132)

    Google Scholar 

  2. Cockburn, B.: Continuous dependence and error estimation for viscosity methods. Acta Numer. 12, 127–180 (2003). MR 2249155

    Google Scholar 

  3. Ebmeyer, C.: Error estimates for a class of degenerate parabolic equations. SIAM J. Numer. Anal. 35 (3), 1095–1112 (1998) (electronic). MR 1619863

    Google Scholar 

  4. Escobedo, M., Vázquez, J.L., Zuazua, E.: Entropy solutions for diffusion-convection equations with partial diffusivity. Trans. Am. Math. Soc. 343 (2), 829–842 (1994). MR 1225573

    Google Scholar 

  5. Evje, S., Karlsen, K.H.: Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (6), 1838–1860 (2000) (electronic). MR 1766850 (2001g:65110)

    Google Scholar 

  6. Karlsen, K.H., Risebro, N.H., Storrøsten, E.B.: L 1 error estimates for difference approximations of degenerate convection-diffusion equations. Math. Comput. 83 (290), 2717–2762 (2014). MR 3246807

    Google Scholar 

  7. Karlsen, K.H., Risebro, N.H., Storrøsten, E.B.: On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions. ESAIM Math. Model. Numer. Anal. 50 (2), 499–539 (2016). MR 3482553

    Google Scholar 

  8. Kuznetsov, N.N.: The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16 (6), 1489–1502, 1627 (1976). MR 0483509 (58 #3510)

    Google Scholar 

  9. Nessyahu, H., Tadmor, E.: The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Numer. Anal. 29 (6), 1505–1519 (1992). MR 1191133

    Google Scholar 

  10. Nessyahu, H., Tadmor, E., Tassa, T.: The convergence rate of Godunov type schemes. SIAM J. Numer. Anal. 31 (1), 1–16 (1994). MR 1259963

    Google Scholar 

  11. Nochetto, R.H.: Finite element methods for parabolic free boundary problems. In: Advances in Numerical Analysis (Lancaster, 1990), vol. I, pp. 34–95. Oxford Science Publications/Oxford University Press, New York (1991). MR 1138471

    Google Scholar 

  12. Radu, F.A., Pop, I.S., Knabner, P.: Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math. 109 (2), 285–311 (2008). MR 2385655

    Google Scholar 

  13. Şabac, F.: The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34 (6), 2306–2318 (1997). MR 1480382

    Google Scholar 

  14. Teng, Z.-H., Zhang, P.-W.: Optimal L 1-rate of convergence for viscosity method and monotone scheme to piecewise constant solutions with shocks. In: Advances in Numerical Mathematics. Proceedings of the Second Japan-China Seminar on Numerical Mathematics (Tokyo, 1994). Lecture Notes in Numerical and Applied Analysis, vol. 14, pp. 209–225. Kinokuniya, Tokyo (1995). MR 1469007

    Google Scholar 

  15. Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Diffusion Equations. World Scientific Publishing Co., Inc., River Edge (2001); Translated from the 1996 Chinese original and revised by the authors. MR 1881297

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Norway via grants no. 250674/F20 and 214495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils H. Risebro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karlsen, K.H., Risebro, N.H., Storrøsten, E.B. (2017). Practical Convergence Rates for Degenerate Parabolic Equations. In: Gosse, L., Natalini, R. (eds) Innovative Algorithms and Analysis. Springer INdAM Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-49262-9_9

Download citation

Publish with us

Policies and ethics