Skip to main content

Concentration Waves of Chemotactic Bacteria: The Discrete Velocity Case

  • Chapter
  • First Online:
Innovative Algorithms and Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 16))

Abstract

The existence of travelling waves for a coupled system of hyperbolic/parabolic equations is established in the case of a finite number of velocities in the kinetic equation. This finds application in collective motion of chemotactic bacteria. The analysis builds on the previous work by the first author (arXiv:1607.00429) in the case of a continuum of velocities. Here, the proof is specific to the discrete setting, based on the decomposition of the population density in special Case’s modes. Some counter-intuitive results are discussed numerically, including the co-existence of several travelling waves for some sets of parameters, as well as the possible non-existence of travelling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We refer to [7, 8] for a discussion between this characterization and the Milne problem in radiative transfer theory [5].

  2. 2.

    Notice that these weights are signed.

  3. 3.

    Moreover, we have no argument so far to determine the signs of the coefficients (a j , b j ), if they have any.

  4. 4.

    This is clearly the case due to integrability over \(\mathbb{R}\).

  5. 5.

    Notice that the value z = 0 is not an issue here. In fact, Lemma 7 includes the values z = 0+ and z = 0 which must be distinguished from each other because I is not continuous at z = 0.

  6. 6.

    The restriction c > c is due to confinement on the right hand side, whereas the condition c > 0 is due to the arbitrary choice of the direction of propagation of the wave (here, left to right), which influences itself the monotonicity of N (here, increasing). It is an arbitrary choice, of course, since the problem is symmetric.

References

  1. Aamodt, R.E., Case, K.M.: Useful identities for half-space problems in linear transport theory. Ann. Phys. 21, 284–301 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, J.: Chemotaxis in bacteria. Science 153 (3737), 708–716 (1966)

    Article  Google Scholar 

  3. Almeida, L., Emako, C., Vauchelet, N.: Existence and diffusive limit of a two-species kinetic model of chemotaxis (2014). arXiv:1404.4769

    Google Scholar 

  4. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9 (2), 147–177 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Santos, R., Sentis, R.L.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284 (2), 617–649 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berg, H.C.: E. coli in Motion. Springer, New York (2004)

    Google Scholar 

  7. Calvez, V.: Chemotactic waves of bacteria at the mesoscale (2016). arXiv:1607.00429

    Google Scholar 

  8. Calvez, V., Raoul, G., Schmeiser, C.: Confinement by biased velocity jumps: aggregation of Escherichia coli. Kinet. Relat. Models 8 (4), 651–666 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvez, V., Gosse, L., Twarogowska, M.: Traveling chemotactic aggregates at mesoscopic scale and bi-stability (2016, Submitted)

    Google Scholar 

  10. Case, K.M.: Elementary solutions of the transport equation and their applications. Ann. Phys. 9, 1–23 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chalub, F.A.C.C., Dolak-Struss, Y., Markowich, P., Oelz, D., Schmeiser, C., Soreff, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 5 (6), 595–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emako, C., Tang, M.: Well-balanced and asymptotic preserving schemes for kinetic models (2016). arXiv:1603.03171

    Google Scholar 

  14. Emako, C., Gayrard, C., Buguin, A., de Almeida, L.N., Vauchelet, N.: Traveling pulses for a two-species chemotaxis model. PLOS Comput. Biol. 12 (4), e1004843 (2016)

    Article  Google Scholar 

  15. Erban, R., Othmer, H.G.: From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model. Simul. 3 (2), 362–394 (2005)

    Google Scholar 

  16. Filbet, F., Yang, C.: An inverse Lax–Wendroff method for boundary conditions applied to Boltzmann type models. J. Comput. Phys. 245, 43–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Filbet, F., Yang, C.: Numerical simulations of kinetic models for chemotaxis. SIAM J. Sci. Comput. 36 (3), B348–B366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franz, B., Xue, C., Painter, K.J., Erban, R.: Travelling waves in hybrid chemotaxis models. Bull. Math. Biol. 76 (2), 377–400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gosse, L.: A well-balanced scheme for kinetic models of chemotaxis derived from one-dimensional local forward-backward problems. Math. Biosci. 242, 117–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gosse, L.: Computing Qualitatively Correct Approximations of Balance Laws. SIMAI Springer Series, vol. 2. Springer Milan, Milano (2013)

    Google Scholar 

  21. Gosse, L.: Redheffer products and numerical approximation of currents in one-dimensional semiconductor kinetic models. SIAM Multiscale Model. Simul. 12, 1533–1560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gosse, L.: Viscous equations treated with \(\mathcal{L}\)-splines and Steklov-Poincaré operator in two dimensions. In: Gosse, L., Natalini, R. (eds.) Innovative Algorithms and Analysis. Springer, Cham (2016). doi:10.1007/978-3-319-49262-9

    Google Scholar 

  23. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30 (2), 235–248 (1971)

    Article  MATH  Google Scholar 

  24. Mischler, S., Weng, Q.: On a linear runs and tumbles equation (2016). arXiv:1602.03474

    Google Scholar 

  25. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26 (3), 263–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perthame, B., Tang, M., Vauchelet, N.: Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway (2015). arXiv:1503.03979

    Google Scholar 

  27. Rousset, M., Samaey, G.: Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. Math. Models Methods Appl. Sci. 23 (12), 2155–2191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Salman, H., Zilman, A., Loverdo, C., Jeffroy, M., Libchaber, A.: Solitary modes of bacterial culture in a temperature gradient. Phys. Rev. Lett. 97 (11), 118101 (2006)

    Article  Google Scholar 

  29. Saragosti, J., Calvez, V., Bournaveas, N., Buguin, A., Silberzan, P., Perthame, B.: Mathematical description of bacterial traveling pulses. PLoS Comput. Biol. 6 (8), e1000890 (2010)

    Article  MathSciNet  Google Scholar 

  30. Saragosti, J., Calvez, V., Bournaveas, N., Perthame, B., Buguin, A., Silberzan, P.: Directional persistence of chemotactic bacteria in a traveling concentration wave. PNAS 108 (39), 16235–16240 (2011)

    Article  Google Scholar 

  31. Stroock, D.W.: Some stochastic processes which arise from a model of the motion of a bacterium. Z. Wahrscheinlichkeitstheorie verw Gebiete 28 (4), 305–315 (1974)

    Article  MATH  Google Scholar 

  32. Tindall, M.J., Maini, P.K., Porter, S.L., Armitage, J.P.: Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull. Math. Biol. 70 (6), 1570–1607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70 (1), 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xue, C., Hwang, H.J., Painter, K.J., Erban, R.: Travelling waves in hyperbolic chemotaxis equations. Bull. Math. Biol. 73 (8), 1695–1733 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yasuda, S.: A Monte Carlo simulation for kinetic chemotaxis models: an application to the traveling population wave (2015). arXiv:1503.08099

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639638). M.T. has benefited from the PICS Project CNR-CNRS 2015-2017 Modèles mathématiques et simulations numériques pour le mouvement de cellules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Calvez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Calvez, V., Gosse, L., Twarogowska, M. (2017). Concentration Waves of Chemotactic Bacteria: The Discrete Velocity Case. In: Gosse, L., Natalini, R. (eds) Innovative Algorithms and Analysis. Springer INdAM Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-49262-9_3

Download citation

Publish with us

Policies and ethics