Skip to main content

Self-stabilizing Robots in Highly Dynamic Environments

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10083)

Abstract

This paper deals with the classical problem of exploring a ring by a cohort of synchronous robots. We focus on the perpetual version of this problem in which it is required that each node of the ring is visited by a robot infinitely often.

The challenge in this paper is twofold. First, we assume that the robots evolve in a highly dynamic ring, i.e., edges may appear and disappear unpredictably without any recurrence nor periodicity assumption. The only assumption we made is that each node is infinitely often reachable from any other node. Second, we aim at providing a self-stabilizing algorithm to the robots, i.e., the algorithm must guarantee an eventual correct behavior regardless of the initial state and positions of the robots. Our main contribution is to show that this problem is deterministically solvable in this harsh environment by providing a self-stabilizing algorithm for three robots.

Keywords

  • Coherent State
  • Finite Time
  • Static Graph
  • Current Node
  • Leader Election

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work has been partially supported by the ANR project ESTATE and was initiated while the second author was visiting UPMC Sorbonne Universités.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   42.79
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   54.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: International Conference on Network-Based Information Systems (NBiS), pp. 318–324 (2011)

    Google Scholar 

  3. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    CrossRef  Google Scholar 

  5. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    CrossRef  MATH  Google Scholar 

  6. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Tixeuil, S.: Self-stabilizing Algorithms, Chapman & Hall. In: Algorithms and Theory of Computation Handbook, pp. 26.1-26.45. CRC Press, Taylor & Francis Group (2009)

    Google Scholar 

  8. Shannon, C.: Presentation of a maze-solving machine. In: 8th Conference of the Josiah Macy, Jr. Foundation, pp. 173–180 (1951)

    Google Scholar 

  9. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77096-1_8

    CrossRef  Google Scholar 

  10. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anonymous partial grids exploration by mobile robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92221-6_27

    CrossRef  Google Scholar 

  12. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14–15), 1583–1598 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16926-7_20

    CrossRef  Google Scholar 

  15. Datta, A., Lamani, A., Larmore, L., Petit, F.: Ring exploration by oblivious agents with local vision. In: IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 347–356 (2013)

    Google Scholar 

  16. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15763-9_29

    CrossRef  Google Scholar 

  17. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 534–543. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10631-6_55

    CrossRef  Google Scholar 

  18. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25873-2_31

    CrossRef  Google Scholar 

  19. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03578-9_2

    CrossRef  Google Scholar 

  20. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09620-9_20

    Google Scholar 

  21. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 570–579 (2016)

    Google Scholar 

  22. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Symposium on the Theory of Computing (STOC), pp. 513–522 (2010)

    Google Scholar 

  23. Blin, L., Gradinariu Potop-Butucaru, M., Tixeuil, S.: On the self-stabilization of mobile robots in graphs. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 301–314. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77096-1_22

    CrossRef  Google Scholar 

  24. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 744–753. Springer, Heidelberg (2006). doi:10.1007/11940128_74

    CrossRef  Google Scholar 

  25. Dubois, S., Kaaouachi, M.-H., Petit, F.: Enabling minimal dominating set in highly dynamic distributed systems. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 51–66. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21741-3_4

    CrossRef  Google Scholar 

  26. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic environments. Technical report (2016). arXiv:1609.06161

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Bournat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bournat, M., Datta, A.K., Dubois, S. (2016). Self-stabilizing Robots in Highly Dynamic Environments. In: Bonakdarpour, B., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2016. Lecture Notes in Computer Science(), vol 10083. Springer, Cham. https://doi.org/10.1007/978-3-319-49259-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49259-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49258-2

  • Online ISBN: 978-3-319-49259-9

  • eBook Packages: Computer ScienceComputer Science (R0)