Abstract
This paper deals with the classical problem of exploring a ring by a cohort of synchronous robots. We focus on the perpetual version of this problem in which it is required that each node of the ring is visited by a robot infinitely often.
The challenge in this paper is twofold. First, we assume that the robots evolve in a highly dynamic ring, i.e., edges may appear and disappear unpredictably without any recurrence nor periodicity assumption. The only assumption we made is that each node is infinitely often reachable from any other node. Second, we aim at providing a self-stabilizing algorithm to the robots, i.e., the algorithm must guarantee an eventual correct behavior regardless of the initial state and positions of the robots. Our main contribution is to show that this problem is deterministically solvable in this harsh environment by providing a self-stabilizing algorithm for three robots.
Keywords
- Coherent State
- Finite Time
- Static Graph
- Current Node
- Leader Election
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This work has been partially supported by the ANR project ESTATE and was initiated while the second author was visiting UPMC Sorbonne Universités.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)
Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: International Conference on Network-Based Information Systems (NBiS), pp. 318–324 (2011)
Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)
Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)
Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)
Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
Tixeuil, S.: Self-stabilizing Algorithms, Chapman & Hall. In: Algorithms and Theory of Computation Handbook, pp. 26.1-26.45. CRC Press, Taylor & Francis Group (2009)
Shannon, C.: Presentation of a maze-solving machine. In: 8th Conference of the Josiah Macy, Jr. Foundation, pp. 173–180 (1951)
Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77096-1_8
Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)
Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anonymous partial grids exploration by mobile robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92221-6_27
Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)
Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14–15), 1583–1598 (2010)
Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16926-7_20
Datta, A., Lamani, A., Larmore, L., Petit, F.: Ring exploration by oblivious agents with local vision. In: IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 347–356 (2013)
Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15763-9_29
Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 534–543. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10631-6_55
Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25873-2_31
Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03578-9_2
Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09620-9_20
Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 570–579 (2016)
Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Symposium on the Theory of Computing (STOC), pp. 513–522 (2010)
Blin, L., Gradinariu Potop-Butucaru, M., Tixeuil, S.: On the self-stabilization of mobile robots in graphs. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 301–314. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77096-1_22
Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 744–753. Springer, Heidelberg (2006). doi:10.1007/11940128_74
Dubois, S., Kaaouachi, M.-H., Petit, F.: Enabling minimal dominating set in highly dynamic distributed systems. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 51–66. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21741-3_4
Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic environments. Technical report (2016). arXiv:1609.06161
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Bournat, M., Datta, A.K., Dubois, S. (2016). Self-stabilizing Robots in Highly Dynamic Environments. In: Bonakdarpour, B., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2016. Lecture Notes in Computer Science(), vol 10083. Springer, Cham. https://doi.org/10.1007/978-3-319-49259-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-49259-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49258-2
Online ISBN: 978-3-319-49259-9
eBook Packages: Computer ScienceComputer Science (R0)
