Skip to main content

Abstract

The Bohr inequality, first introduced by Harald Bohr in 1914, deals with finding the largest radius r, 0 < r < 1, such that n = 0  | a n  | r n ≤ 1 holds whenever |  n = 0 a n z n | ≤ 1 in the unit disk \(\mathbb{D}\) of the complex plane. The exact value of this largest radius, known as the Bohr radius, has been established to be 1∕3. This paper surveys recent advances and generalizations on the Bohr inequality. It discusses the Bohr radius for certain power series in \(\mathbb{D}\), as well as for analytic functions from \(\mathbb{D}\) into particular domains. These domains include the punctured unit disk, the exterior of the closed unit disk, and concave wedge-domains. The analogous Bohr radius is also studied for harmonic and starlike logharmonic mappings in \(\mathbb{D}\). The Bohr phenomenon which is described in terms of the Euclidean distance is further investigated using the spherical chordal metric and the hyperbolic metric. The exposition concludes with a discussion on the n-dimensional Bohr radius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulhadi, Z., Ali, R.M.: Univalent logharmonic mappings in the plane. Abstr. Appl. Anal. 2012, 32 pp. (2012). Art. ID 721943

    Google Scholar 

  2. Abdulhadi Z., Hengartner, W.: Spirallike logharmonic mappings. Complex Var. Theory Appl. 9, 121–130 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulhadi, Z., Hengartner, W.: Univalent harmonic mappings on the left half-plane with periodic dilatations. In: Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), pp. 13–28. Ellis Horwood Series in Mathematics and its Applications. Horwood, Chichester (1989)

    Google Scholar 

  4. Abu-Muhanna, Y.: Bohr phenomenon in subordination and bounded harmonic classes. Complex Var. Elliptic Equ. 55 (11), 1071–1078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abu-Muhanna Y., Ali R.M.: Bohr phenomenon for analytic functions into the exterior of a compact convex body. J. Math. Anal. Appl. 379 (2), 512–517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abu-Muhanna, Y., Ali, R.M.: Bohr phenomenon for analytic functions and the hyperbolic metric. Math. Nachr. 286 (11–12), 1059–1065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abu-Muhanna, Y., Ali, R.M., Ng, Z.C., Hasni, S.F.M.: Bohr radius for subordinating families of analytic functions and bounded harmonic mappings. J. Math. Anal. Appl. 420 (1), 124–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Abu-Muhanna, Y., Gunatillake G.: Bohr phenomenon in weighted Hardy-Hilbert spaces. Acta Sci. Math. (Szeged) 78 (3–4), 517–528 (2012)

    Google Scholar 

  9. Abu-Muhanna, Y., Hallenbeck D.J.: A class of analytic functions with integral representations. Complex Var. Theory Appl. 19 (4), 271–278 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ali, R.M., Abdulhadi, Z., Ng, Z.C.: The Bohr radius for starlike logharmonic mappings. Complex Var. Elliptic Equ. 61 (1), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ali, R.M., Barnard, R.W., Solynin, AY.: A note on the Bohr’s phenomenon for power series, J. Math. Anal. Appl. 449 (1), 154–167 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series. Proc. Am. Math. Soc. 128 (4), 1147–1155 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aizenberg, L.: Remarks on the Bohr and Rogosinski phenomena for power series. Anal. Math. Phys. 2, 69–78 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aizenberg, L.: Generalization of Carathéodory’s inequality and the Bohr radius for multidimensional power series. In: Selected Topics in Complex Analysis. pp. 87–94. Operator Theory Advances and Applications, vol. 158. Birkhäuser, Basel (2005)

    Google Scholar 

  15. Aizenberg, L., Aytuna, A., Djakov, P.: An abstract approach to Bohr’s phenomenon. Proc. Am. Math. Soc. 128 (9), 2611–2619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aizenberg, L., Aytuna, A., Djakov, P.: Generalization of a theorem of Bohr for bases in spaces of holomorphic functions of several complex variables. J. Math. Anal. Appl. 258 (2), 429–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aizenberg, L., Tarkhanov, N.: A Bohr phenomenon for elliptic equations. Proc. Lond. Math. Soc. 82 (2), 385–401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aytuna A., Djakov, P.: Bohr property of bases in the space of entire functions and its generalizations. Bull. Lond. Math. Soc. 45 (2), 411–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Stud. Math. 175 (3), 285–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: The Bohr radius of the n-dimensional polydisk is equivalent to \(\sqrt{(\log n)/n}\). Adv. Math. 264, 726–746 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beardon, A.F., Minda, D.: The Hyperbolic Metric and Geometric Function Theory. Quasiconformal Mappings and Their Applications, pp. 9–56. Narosa, New Delhi (2007)

    Google Scholar 

  22. Bénéteau, C., Dahlner, A., Khavinson, D.: Remarks on the Bohr phenomenon. Comput. Methods Funct. Theory 4 (1), 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Blasco, O.: The Bohr radius of a Banach space. In: Vector Measures, Integration and Related Topics. Operator Theory Advances in Applications, vol. 201, pp. 59–64. Birkhäuser, Basel (2010)

    Google Scholar 

  24. Boas, H.P.: Majorant series. Korean Math. Soc. 37 (2), 321–337 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Am. Math. Soc. 125 (10), 2975–2979 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bohnenblustmm, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32 (2), 600–622 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bohr H.: A theorem concerning power series. Proc. Lond. Math. Soc. 13 (2), 1–5 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bombieri E.: Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze. Boll. Unione Mat. Ital. 17, 276–282 (1962)

    MATH  Google Scholar 

  29. Bombieri, E., Bourgain J.: A remark on Bohr’s inequality. Int. Math. Res. Not. 80, 4307–4330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen Sh., Ponnusamy S., Wang X.: Coefficient estimates and Landau-Bloch’s theorem for planar harmonic mappings. Bull. Malaysian Math. Sci. Soc. 34 (2), 255–265 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Chen Sh., Ponnusamy S., Wang X.: Bloch and Landau’s theorems for planar p-harmonic mappings. J. Math. Anal. Appl. 373, 102–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chu, C.: Asymptotic Bohr radius for the polynomials in one complex variable. Contemp. Math. 638, 39–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Defant, A., Frerick, L.: A logarithmic lower bound for multi-dimensional bohr radii. Isr. J. Math. 152 (1), 17–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogenous polynomials is hypercontractive. Ann. Math. (2) 174, 512–517 (2011)

    Google Scholar 

  36. Defant, A., García, D., Maestre, M.: Bohr’s power series theorem and local Banach space theory. J. Reine Angew. Math. 557, 173–197 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Defant, A., García, D., Maestre, M.: Estimates for the first and second Bohr radii of Reinhardt domains. J. Approx. Theory 128 (1), 53–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231 (5), 2837–2857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Defant, A., Prengel, C.: Harald Bohr meets Stefan Banach. Methods in Banach space theory, pp. 317–339 London Mathematical Society Lecture Notes Series, vol. 337. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  40. Dineen, S., Timoney, R.M.: Absolute bases, tensor products and a theorem of Bohr. Studia Math. 84, 227–234 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Dineen, S., Timoney, R.M.: On a problem of H. Bohr. Bull. Soc. R. Sci. Liége 60 (6), 401–404 (1991)

    Google Scholar 

  42. Dixon P.G.: Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 27 (4), 359–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Djakov P.B., Ramanujan M.S.: A remark on Bohr’s theorem and its generalizations. J. Anal. 8, 65–77 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Duren, P.L.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  45. Fournier, R.: Asymptotics of the Bohr radius for polynomials of fixed degree. J. Math. Anal. Appl. 338 (2), 1100–1107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Fournier R., Ruscheweyh S.: On the Bohr radius for simply connected plane domains. In: Hilbert Spaces of Analytic Functions CRM Proceedings Lecture Notes, pp. 165–172, vol. 51. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  47. Guadarrama, Z.: Bohr’s radius for polynomials in one complex variable. Comput. Methods Funct. Theory 5 (1), 143–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hamada, H., Honda, T.: Some generalizations of Bohr’s theorem. Math. Methods Appl. Sci. 35 (17), 2031–2035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hamada, H., Honda, T., Kohr, G.: Bohr’s theorem for holomorphic mappings with values in homogeneous balls. Isr. J. Math. 173 (1), 177–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hua L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. American Mathematical Society, Providence, RI (1963) Translated from the Russian by Leo Ebner and Adam Korányi.

    Google Scholar 

  51. Kaptanoǧlu, H.T.: Bohr phenomena for Laplace-Beltrami operators. Indag. Math. (N.S.) 17 (3), 407–423 (2006)

    Google Scholar 

  52. Kaptanoǧlu H.T., Sadık N.: Bohr radii of elliptic region. Russ. J. Math. Phys. 12 (3), 363–365 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Kresin G., Maz’ya V.: Sharp Bohr type real part estimates. Comput. Methods Funct. Theory 7 (1), 151–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kresin, G., Maz’ya, V.: Sharp Real-Part Theorems. A Unified Approach. [Translated from the Russian and edited by T. Shaposhnikova]. Lecture Notes in Mathematics, vol. 1903. Springer, Berlin (2007)

    Google Scholar 

  55. Lassère, P., Mazzilli, E.: Bohr’s phenomenon on a regular condenser in the complex plane. Comput. Methods Funct. Theory 12 (1), 31–43 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lassère, P., Mazzilli, E.: The Bohr radius for an elliptic condenser. Indag. Math. (N.S.) 24 (1), 83–102 (2013)

    Google Scholar 

  57. Li, P., Ponnusamy, S., Wang, X.: Some properties of planar p-harmonic and log-p-harmonic mappings. Bull. Malays. Math. Sci. Soc. (2) 36 (3), 595–609 (2013)

    Google Scholar 

  58. Liu, T., Wang, J.: An absolute estimate of the homogeneous expansions of holomorphic mappings. Pacific J. Math. 231 (1), 155–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Mao, Z., Ponnusamy, S., Wang, X.: Schwarzian derivative and Landau’s theorem for logharmonic mappings. Complex Var. Elliptic Equ. 58 (8), 1093–1107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nehari Z.: Conformal mapping. Reprinting of the 1952 edition, vii+396 pp. Dover Publications, Inc., New York (1975)

    Google Scholar 

  61. Paulsen V.I., Popescu G., Singh D.: On Bohr’s inequality. Proc. Lond. Math. Soc. 85 (2), 493–512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Paulsen, V.I., Singh, D.: Bohr’s inequality for uniform algebras. Proc. Am. Math. Soc. 132 (12), 3577–3579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. Paulsen, V.I., Singh, D.: Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 38 (6), 991–999 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ponnusamy S.: Foundations of Complex Analysis. Alpha Science International Publishers, UK (2005)

    MATH  Google Scholar 

  65. Popescu, G.: Multivariable Bohr inequalities. Trans. Am. Math. Soc. 359 (11), 5283–5317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Roos G.: H. Bohr’s theorem for bounded symmetric domains. arXiv:0812.4815 (2011)

    Google Scholar 

  67. Sidon S.: Über einen Satz von Herrn Bohr. Math. Z. 26 (1), 731–732 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  68. Titchmarsh E.C.: Obituary: Harald Bohr. J. Lond. Math. Soc. 28, 113–115 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  69. Tomić, M.: Sur un théorème de H. Bohr. Math. Scand. 11, 103–106 (1962)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work benefited greatly from the stimulating discussions and careful scrutiny of the manuscript by our student, Zhen Chuan Ng. The work of the second author was supported in parts by a research university grant from Universiti Sains Malaysia. The research of the third author was supported by project RUS/RFBR/P-163 under the Department of Science & Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosihan M. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muhanna, Y.A., Ali, R.M., Ponnusamy, S. (2017). On the Bohr Inequality. In: Govil, N., Mohapatra, R., Qazi, M., Schmeisser, G. (eds) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-49242-1_13

Download citation

Publish with us

Policies and ethics