Gene–Environment Interaction in the Behavioral Sciences: Findings, Challenges, and Prospects

Abstract

We review gene × environment interaction (G×E) research in behavioral and psychiatric genetics. Two approaches to G×E are contrasted: a latent-variable approach that seeks to determine whether the heritability of a behavioral outcome varies by environmental exposure, and a candidate-gene × environment approach that seeks to determine whether genotypes are differentially sensitive to environmental conditions. Three major challenges to current G×E research are identified: (1) most published G×E findings are based on small samples and thus a high proportion are likely to be false-positive reports; (2) imprecision in the assessment of the phenotype, environment, and the genotype can significantly attenuate the power of a G×E study; and (3) a G×E is not an inherent property of the organism but rather a feature of a statistical model and so its identification depends on the structure of that model. The promise of genomic medicine is that interventions can be tailored to individual treatments, a form of G×E. Nonetheless, there is currently limited evidence of gene × intervention interactions in behavioral and psychiatric genetics. Future gene × intervention research will benefit from what we have learned from earlier G×E research and especially the need for large samples and the standardization of assessments to enable pooling of data across multiple studies.

Keywords

Gene × environment interaction Candidate-gene studies Genome-wide Association Studies (GWAS) False-positive findings Diathesis–stress model Social control model 

References

  1. Ahmad, S., Rukh, G., Varga, T. V., Ali, A., Kurbasic, A., Shungin, D., … DIRECT Consortium. (2013). Gene × physical activity interactions in obesity: Combined analysis of 111,421 individuals of European Ancestry. PLoS Genetics, 9(7), e1003607. doi:10.1371/journal.pgen.1003607.Google Scholar
  2. Anastasi, A. (1958). Heredity, environment, and the question "How?". Psychological Review, 65(4), 197–208.CrossRefPubMedGoogle Scholar
  3. Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., … Giles, W. H. (2006). The enduring effects of abuse and related adverse experiences in childhood—A convergence of evidence from neurobiology and epidemiology. [Review]. European Archives of Psychiatry and Clinical Neuroscience, 256(3), 174–186. doi:10.1007/s00406-005-0624-4.
  4. Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48(5), 406–409. doi:10.1002/dev.20152.CrossRefPubMedGoogle Scholar
  5. Barrdahl, M., Canzian, F., Joshi, A. D., Travis, R. C., Chang-Claude, J., Auer, P. L., … Campa, D. (2014). Post-GWAS gene–environment interplay in breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79000 women. Human Molecular Genetics, 23(19), 5260–5270. doi:10.1093/hmg/ddu223.
  6. Bastiaansen, J. A., Servaas, M. N., Marsman, J. B. C., Ormel, J., Nolte, I. M., Riese, H., & Aleman, A. (2014). Filling the gap: Relationship between the serotonin-transporter-linked polymorphic region and Amygdala activation. Psychological Science, 25(11), 2058–2066. doi:10.1177/0956797614548877.CrossRefPubMedGoogle Scholar
  7. Baugh, C. M., Robbins, C. A., Stern, R. A., & McKee, A. C. (2014). Current understanding of chronic traumatic encephalopathy. [Review]. Current Treatment Options in Neurology, 16(9), 306. doi:10.1007/s11940-014-0306-5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beaver, K. M., DeLisi, M., Wright, J. P., & Vaughn, M. G. (2009). Gene–environment interplay and delinquent involvement evidence of direct, indirect, and interactive effects. Journal of Adolescent Research, 24(2), 147–168. doi:10.1177/0743558408329952.CrossRefGoogle Scholar
  9. Becker, K., El-Faddagh, M., Schmidt, M. H., Esser, G., & Laucht, M. (2008). Interaction of dopamine transporter genotype with prenatal smoke exposure on ADHD symptoms. Journal of Pediatrics, 152(2), 263–269. doi:10.1016/j.jpeds.2007.07.004.CrossRefPubMedGoogle Scholar
  10. Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14(8), 746–754. doi:10.1038/mp.2009.44.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Belsky, J., Newman, D. A., Widaman, K. F., Rodkin, P., Pluess, M., Fraley, R. C., … Roisman, G. I. (2015). Differential susceptibility to effects of maternal sensitivity? A study of candidate plasticity genes. Development and Psychopathology, 27(3), 725–746.Google Scholar
  12. Berrington de Gonzales, A., & Cox, D. R. (2007). Interpretation of interaction: A review. Annals of Applied Statistics, 1, 371–385.CrossRefGoogle Scholar
  13. Bierut, L. J., Johnson, E. O., & Saccone, N. L. (2014). A glimpse into the future—Personalized medicine for smoking cessation. [Review]. Neuropharmacology, 76, 592–599. doi:10.1016/j.neuropharm.2013.09.009.CrossRefPubMedGoogle Scholar
  14. Boardman, J. D. (2009). State-level moderation of genetic tendencies to smoke. American Journal of Public Health, 99(3), 480–486. doi:10.2105/ajph.2008.134932.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boardman, J. D., Blalock, C. L., & Pampel, F. C. (2010). Trends in the genetic influences on smoking. Journal of Health and Social Behavior, 51(1), 108–123. doi:10.1177/0022146509361195.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boffetta, P., Winn, D. M., Ioannidis, J. P., Thomas, D. C., Little, J., Smith, G. D., … Khoury, M. J. (2012). Recommendations and proposed guidelines for assessing the cumulative evidence on joint effects of genes and environments on cancer occurrence in humans. International Journal of Epidemiology, 41(3), 686–704. doi:10.1093/ije/dys010.
  17. Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P., Posthuma, D., … Nolen, W. A. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry, 16(5), 516–532. doi:10.1038/mp.2010.38.
  18. Brody, G. H., Beach, S. R. H., Hill, K. G., Howe, G. W., Prado, G., & Fullerton, S. M. (2013). Using genetically informed, randomized prevention trials to test etiological hypotheses about child and adolescent drug use and psychopathology. American Journal of Public Health, 103, S19–S24. doi:10.2105/ajph.2012.301080.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Button, T. M. M., Lau, J. Y. F., Maughan, B., & Eley, T. C. (2008). Parental punitive discipline, negative life events and gene–environment interplay in the development of externalizing behavior. Psychological Medicine, 38(1), 29–39. doi:10.1017/s0033291707001328.CrossRefPubMedGoogle Scholar
  20. Button, T. M. M., Hewitt, J. K., Rhee, S. H., Corley, R. P., & Stallings, M. C. (2010). The moderating effect of religiosity on the genetic variance of problem alcohol use. Alcoholism: Clinical and Experimental Research, 34(9), 1619–1624. doi:10.1111/j.1530-0277.2010.01247.x.CrossRefGoogle Scholar
  21. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.Google Scholar
  22. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I., Harrington, H. L., … Poulton, R. (2003). Influence of life stress on depression: Moderation by polymorphism in the 5-HTT gene. Science, 301, 386–389.Google Scholar
  23. Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167(5), 509–527. doi:10.1176/appi.ajp.2010.09101452.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chan, I. S., & Ginsburg, G. S. (2011). Personalized medicine: Progress and promise. In A. Chakravarti & E. Green (Eds.), Annual review of genomics and human genetics (Vol. 12, pp. 217–244). Palo Alto, CA: Annual Reviews.Google Scholar
  25. Charmantier, A., & Garant, D. (2005). Environmental quality and evolutionary potential: Lessons from wild populations. [Review]. Proceedings of the Royal Society B: Biological Sciences, 272(1571), 1415–1425. doi:10.1098/rspb.2005.3117.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen, L. S., Baker, T. B., Piper, M. E., Breslau, N., Cannon, D. S., Doheny, K. F., … Bierut, L. J. (2012). Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. American Journal of Psychiatry, 169(7), 735–742. doi:10.1176/appi.ajp.2012.11101545.
  27. Clayton, D., & McKeigue, P. M. (2001). Epidemiological methods for studying genes and environmental factors in complex diseases. [Review]. Lancet, 358(9290), 1356–1360. doi:10.1016/s0140-6736(01)06418-2.CrossRefPubMedGoogle Scholar
  28. Colhoun, H. M., McKeigue, P. M., & Smith, G. D. (2003). Problems of reporting genetic associations with complex outcomes. [Review]. Lancet, 361(9360), 865–872. doi:10.1016/s0140-6736(03)12715-8.CrossRefPubMedGoogle Scholar
  29. Crawford, A. A., Lewis, G., Lewis, S. J., & Munafo, M. R. (2013). Systematic review and meta-analysis of serotonin transporter genotype and discontinuation from antidepressant treatment. [Review]. European Neuropsychopharmacology, 23(10), 1143–1150. doi:10.1016/j.euroneuro.2012.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  30. De Gonzalez, A. B., & Cox, D. R. (2007). Interpretation of interaction: A review. [Review]. Annals of Applied Statistics, 1(2), 371–385. doi:10.1214/07-aoas124.CrossRefGoogle Scholar
  31. Dehghan, A., Dupuis, J., Barbalic, M., Bis, J. C., Eiriksdottir, G., Lu, C., … Chasman, D. I. (2011). Meta-analysis of genome-wide association studies in > 80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation, 123(7), 731–U151. doi:10.1161/circulationaha.110.948570.
  32. Dick, D. M. (2011). Gene–environment interaction in psychological traits and disorders. Annual Review of Clinical Psychology, 7, 383–409. doi:10.1146/annurev-clinpsy-032210-104518.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dick, D. M., Viken, R., Purcell, S., Kaprio, J., Pulkkinen, L., & Rose, R. J. (2007). Parental monitoring moderates the importance of genetic and environmental influences on adolescent smoking. Journal of Abnormal Psychology, 116(1), 213–218.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dick, D. M., Latendresse, S. J., Lansford, J. E., Budde, J. P., Goate, A., Dodge, K. A., … Bates, J. E. (2009). Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Archives of General Psychiatry, 66(6), 649–657.Google Scholar
  35. Dick, D. M., Meyers, J. L., Latendresse, S. J., Creemers, H. E., Lansford, J. E., Pettit, G. S., … Huizink, A. C. (2011). CHRM2, parental monitoring, and adolescent externalizing behavior: Evidence for gene–environment interaction. Psychological Science, 22(4), 481–489. doi:10.1177/0956797611403318.
  36. Dudbridge, F., & Fletcher, O. (2014). Gene–environment dependence creates spurious gene–environment interaction. American Journal of Human Genetics, 95(3), 301–307. doi:10.1016/j.ajhg.2014.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Duncan, A. E., Scherrer, J., Fu, Q., Bucholz, K. K., Heath, A. C., True, W. R., … Jacob, T. (2006). Exposure to paternal alcoholism does not predict development of alcohol-use disorders in offspring: Evidence from an offspring-of-twins study. Journal of Studies on Alcohol, 67(5), 649–656.Google Scholar
  38. Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. [Review]. American Journal of Psychiatry, 168(10), 1041–1049. doi:10.1176/appi.ajp.2011.11020191.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Duncan, L. E., Pollastri, A. R., & Smoller, J. W. (2014). Mind the gap why many geneticists and psychological scientists have discrepant views about gene–environment interaction (G×E) research. American Psychologist, 69(3), 249–268. doi:10.1037/a0036320.CrossRefPubMedGoogle Scholar
  40. Eaves, L., & Verhulst, B. (2014). Problems and pit-falls in testing for G × E and epistasis in candidate gene studies of human behavior. Behavior Genetics, 44(6), 578–590. doi:10.1007/s10519-014-9674-6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Eaves, L. J. (2006). Genotype × environment interaction in psychopathology: Fact or artifact? Twin Research and Human Genetics, 9(1), 1–8. doi:10.1375/183242706776403073.CrossRefPubMedGoogle Scholar
  42. Feinberg, M. E., Button, T. M. M., Neiderhiser, J. M., Reiss, D., & Hetherington, E. M. (2007). Parenting and adolescent antisocial behavior and depression—Evidence of genotype × parenting environment interaction. Archives of General Psychiatry, 64(4), 457–465. doi:10.1001/archpsyc.64.4.457.CrossRefPubMedGoogle Scholar
  43. Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.CrossRefGoogle Scholar
  44. Fortier, I., Doiron, D., Little, J., Ferretti, V., L’Heureux, F., Stolk, R. P., … International Harmonization. (2011). Is rigorous retrospective harmonization possible? Application of the DataSHaPER approach across 53 large studies. International Journal of Epidemiology, 40(5), 1314–1328. doi:10.1093/ije/dyr106.Google Scholar
  45. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., … Wellcome Trust Case Control Consortium. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316(5826), 889–894. doi:10.1126/science.1141634.Google Scholar
  46. van Gelder, M., Bretveld, R. W., & Roeleveld, N. (2010). Web-based Questionnaires: The future in epidemiology? American Journal of Epidemiology, 172(11), 1292–1298. doi:10.1093/aje/kwq291.CrossRefPubMedGoogle Scholar
  47. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636–645.CrossRefPubMedGoogle Scholar
  48. Gottlieb, G. (1995). Some conceptual deficiencies in developmental behavior genetics. Human Development, 38(3), 131–141.CrossRefGoogle Scholar
  49. Griffiths, P. E., & Tabery, J. (2008). Behavioral genetics and development: Historical and conceptual causes of controversy. [Review]. New Ideas in Psychology, 26(3), 332–352. doi:10.1016/j.newideapsych.2007.07.016.CrossRefGoogle Scholar
  50. Hamilton, C. M., Strader, L. C., Pratt, J. G., Maiese, D., Hendershot, T., Kwok, R. K., … Haines, J. (2011). The PhenX toolkit: Get the most from your measures. American Journal of Epidemiology, 174(3), 253–260. doi:10.1093/aje/kwr193.
  51. Hamilton, S. P. (2015). The promise of psychiatric pharmacogenomics. [Review]. Biological Psychiatry, 77(1), 29–35. doi:10.1016/j.biopsych.2014.09.009.CrossRefPubMedGoogle Scholar
  52. Harden, K. P., Hill, J. E., Turkheimer, E., & Emery, R. E. (2008). Gene–environment correlation and interaction in peer effects on adolescent alcohol and tobacco use. Behavior Genetics, 38(4), 339–347. doi:10.1007/s10519-008-9202-7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hein, R., Beckmann, L., & Chang-Claude, J. (2008). Sample size requirements for indirect association studies of gene–environment interactions (G × E). Genetic Epidemiology, 32(3), 235–245. doi:10.1002/gepi.20298.CrossRefPubMedGoogle Scholar
  54. Henderson, N. D. (1990). Why do gene–environment interactions appear more often in laboratory animal studies than in human behavioral genetic research? Behavioral and Brain Sciences, 13(1), 136–137.CrossRefGoogle Scholar
  55. Hicks, B. M., South, S. C., DiRago, A. C., Iacono, W. G., & McGue, M. (2009). Environmental adversity and increasing genetic risk for externalizing disorders. Archives of General Psychiatry, 66(6), 640–648.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hunter, D. J. (2005). Gene–environment interactions in human diseases. [Review]. Nature Reviews Genetics, 6(4), 287–298. doi:10.1038/nrg1578.CrossRefPubMedGoogle Scholar
  57. Hyde, L. W., Bogdan, R., & Hariri, A. R. (2011). Understanding risk for psychopathology through imaging gene–environment interactions. [Review]. Trends in Cognitive Sciences, 15(9), 417–427. doi:10.1016/j.tics.2011.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 696–701. doi:10.1371/journal.pmed.0020124.CrossRefGoogle Scholar
  59. Jordan, B. D., Relkin, N. R., Ravdin, L. D., Jacobs, A. R., Bennett, A., & Gandy, S. (1997). Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing [see comments]. JAMA, 278(2), 136–140.CrossRefPubMedGoogle Scholar
  60. Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Grasso, D., Lipschitz, D., Houshyar, S., … Gelernter, J. (2006). Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59(8), 673–680. doi:10.1016/j.biopsych.2005.10.026.
  61. Kilpeläinen, T. O., Qi, L., Brage, S., Sharp, S. J., Sonestedt, E., Demerath, E., … Loos, R. J. F. (2011). Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children. PLoS Medicine, 8(11), e1001116. doi:10.1371/journal.pmed.1001116.
  62. Koopmans, J. R., Slutske, W. S., van Baal, G. C., & Boomsma, D. I. (1999). The influence of religion on alcohol use initiation: Evidence for genotype × environment interaction. Behavior Genetics, 29, 445–453.CrossRefPubMedGoogle Scholar
  63. Kottgen, A., Albrecht, E., Teumer, A., Vitart, V., Krumsiek, J., Hundertmark, C., … MAGIC Consortium. (2013). Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics, 45(2), 145–154. doi:10.1038/ng.2500.Google Scholar
  64. Kutner, K. C., Erlanger, D. M., Tsai, J., Jordan, B., & Relkin, N. R. (2000). Lower cognitive performance of older football players possessing apolipoprotein E epsilon 4. Neurosurgery, 47(3), 651–657. doi:10.1097/00006123-200009000-00026.PubMedGoogle Scholar
  65. Legrand, L. N., Keyes, M., McGue, M., Iacono, W. G., & Krueger, R. F. (2008). Rural environments reduce the genetic influence on adolescent substance use and rule-breaking behavior. Psychological Medicine, 38(9), 1341–1350. doi:10.1017/s0033291707001596.CrossRefPubMedGoogle Scholar
  66. Manolio, T. A., Chisholm, R. L., Ozenberger, B., Roden, D. M., Williams, M. S., Wilson, R., … Ginsburg, G. S. (2013). Implementing genomic medicine in the clinic: The future is here. [Review]. Genetics in Medicine, 15(4), 258–267. doi:10.1038/gim.2012.157.
  67. Manuck, S. B., & McCaffery, J. M. (2014). Gene–environment interaction. [Review; Book Chapter]. Annual Review of Psychology, 65, 41–70. doi:10.1146/annurev-psych-010213-115100.CrossRefPubMedGoogle Scholar
  68. Marchini, J., & Howie, B. (2010). Genotype imputation for genome-wide association studies. [Review]. Nature Reviews Genetics, 11(7), 499–511. doi:10.1038/nrg2796.CrossRefPubMedGoogle Scholar
  69. Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62, 473–481.CrossRefPubMedGoogle Scholar
  70. Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology concepts, research strategies, and implications for research, intervention, and public understanding of genetics. [Review]. Perspectives on Psychological Science, 1(1), 5–27. doi:10.1111/j.1745-6916.2006.00002.x.CrossRefPubMedGoogle Scholar
  71. Munafò, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biological Psychiatry, 63(9), 852–857. doi:10.1016/j.biopsych.2007.08.016.CrossRefPubMedGoogle Scholar
  72. Munafò, M. R., Zammit, S., & Flint, J. (2014). Practitioner review: A critical perspective on geneenvironment interaction models—What impact should they have on clinical perceptions and practice? [Review]. Journal of Child Psychology and Psychiatry, 55(10), 1092–1101. doi:10.1111/jcpp.12261.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Murphy, S. E., Norbury, R., Godlewska, B. R., Cowen, P. J., Mannie, Z. M., Harmer, C. J., & Munafo, M. R. (2013). The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Molecular Psychiatry, 18(4), 512–520. doi:10.1038/mp.2012.19.CrossRefPubMedGoogle Scholar
  74. Offit, K. (2011). Personalized medicine: New genomics, old lessons. [Review]. Human Genetics, 130(1), 3–14. doi:10.1007/s00439-011-1028-3.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Olfson, E., & Bierut, L. J. (2012). Convergence of genome-wide association and candidate gene studies for alcoholism. Alcoholism: Clinical and Experimental Research, 36(12), 2086–2094. doi:10.1111/j.1530-0277.2012.01843.x.CrossRefGoogle Scholar
  76. Park, J. H., Wacholder, S., Gail, M. H., Peters, U., Jacobs, K. B., Chanock, S. J., & Chatterjee, N. (2010). Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nature Genetics, 42(7), 570–U139. doi:10.1038/ng.610.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Perlis, R. H. (2014). Pharmacogenomic testing and personalized treatment of depression. [Review]. Clinical Chemistry, 60(1), 53–59. doi:10.1373/clinchem.2013.204446.CrossRefPubMedGoogle Scholar
  78. Purcell, S. (2002). Variance components models for gene–environment interaction in twin analysis. Twin Research, 6, 554–571.CrossRefGoogle Scholar
  79. Ragoussis, J. (2009). Genotyping technologies for genetic research. Annual review of genomics and human genetics (Vol. 10, pp. 117–133). Palo Alto, CA: Annual Reviews.Google Scholar
  80. Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … LifeLines Cohort Study. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340(6139), 1467–1471. doi:10.1126/science.1235488.Google Scholar
  81. Rose, R. J., Dick, D. M., Viken, R. J., & Kaprio, J. (2001). Gene–environment interaction in patterns of adolescent drinking: Regional residency moderates longitudinal influences on alcohol use. Alcoholism: Clinical and Experimental Research, 25(5), 637–643.CrossRefGoogle Scholar
  82. Rutter, M. (2014). Commentary: G × E in child psychiatry and psychology: a broadening of the scope of enquiry as prompted by Munafo et al. (2014). [Editorial Material]. Journal of Child Psychology and Psychiatry, 55(10), 1102–1104. doi:10.1111/jcpp.12309.CrossRefPubMedGoogle Scholar
  83. Rutter, M., & Silberg, J. (2002). Gene–environmental interplay in relation to emotional and behavioral disturbance. Annual Review of Psychology, 53, 463–490.CrossRefPubMedGoogle Scholar
  84. Salvatore, J. E., Aliev, F., Edwards, A. C., Evans, D. M., Macleod, J., Hickman, M., … Dick, D. M. (2014). Polygenic scores predict alcohol problems in an independent sample and show moderation by the environment. [Meeting Abstract]. Genes, 5, 330–346.Google Scholar
  85. Sameroff, A. J., Seifer, R., & Bartko, W. T. (1997). Environmental perspectives on adaptation during childhood and adolescence. In S. S. Luthar, J. A. Brrack, D. Cicchetti, & J. R. Weisz (Eds.), Developmental psychopathology: Perspectives on adjustment, risk and disorder (pp. 507–526). Cambridge, England: Cambridge University Press.Google Scholar
  86. Shanahan, M. J., & Hofer, S. M. (2005). Social context in gene–environment interactions: Retrospect and prospect. Journal of Gerontology, 60B, 65–76.CrossRefGoogle Scholar
  87. Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19(4), 1039–1046. doi:10.1017/s0954579407000521.CrossRefPubMedGoogle Scholar
  88. Siontis, K. C. M., Patsopoulos, N. A., & Ioannidis, J. P. A. (2010). Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. European Journal of Human Genetics, 18(7), 832–837. doi:10.1038/ejhg.2010.26.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Smith, P. G., & Day, N. E. (1984). The design of case-control studies: The influence of confounding and interactions. International Journal of Epidemiology, 13(3), 356–365. doi:10.1093/ije/13.3.356.CrossRefPubMedGoogle Scholar
  90. Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., … MAGIC. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42(11), 937–948. doi:10.1038/ng.686Google Scholar
  91. Sullivan, P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61(10), 1121–1126. doi:10.1016/j.biopsych.2006.11.010.CrossRefPubMedGoogle Scholar
  92. Sullivan, P. F. (2010). The Psychiatric GWAS Consortium: Big science comes to psychiatry. [Editorial Material]. Neuron, 68(2), 182–186. doi:10.1016/j.neuron.2010.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tabery, J. (2008). R. A. Fisher, Lancelot Hogben, and the origin(s) of genotype–environment interaction. Journal of the History of Biology, 41(4), 717–761. doi:10.1007/s10739-008-9155-y.CrossRefPubMedGoogle Scholar
  94. Tabery, J. (2014). Beyond versus: The struggle to understand the interaction of nature and nurture. Cambridge: MIT Press.CrossRefGoogle Scholar
  95. Teasdale, G. M., Nicoll, J. A. R., Murray, G., & Fiddes, M. (1997). Association of apolipoprotein E polymorphism with outcome after head injury. [Article]. Lancet, 350(9084), 1069–1071. doi:10.1016/s0140-6736(97)04318-3.CrossRefPubMedGoogle Scholar
  96. Thomas, D. C., Lewinger, J. P., Murcray, C. E., & Gauderman, W. J. (2012). Invited Commentary: GE-Whiz! Ratcheting gene–environment studies up to the whole genome and the whole exposome. [Editorial Material]. American Journal of Epidemiology, 175(3), 203–207. doi:10.1093/aje/kwr365.CrossRefPubMedGoogle Scholar
  97. Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., … Saguenay Youth Study Group. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153–182. doi:10.1007/s11682-013-9269-5.Google Scholar
  98. Thompson, W. D. (1991). Effect modification and the limits of biological inference from epidemiological data. [Editorial Material]. Journal of Clinical Epidemiology, 44(3), 221–232. doi:10.1016/0895-4356(91)90033-6.CrossRefPubMedGoogle Scholar
  99. Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160–164.CrossRefGoogle Scholar
  100. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623–628.CrossRefPubMedGoogle Scholar
  101. Uher, R., GENDEP Investigators, MARS Investigators, & STAR*D Investigators. (2013). Common genetic variation and antidepressant efficacy in major depressive disorder: A meta-analysis of three genome-wide pharmacogenetic studies. American Journal of Psychiatry, 170(2), 207–217. doi:10.1176/appi.ajp.2012.12020237.Google Scholar
  102. Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era—Concepts and misconceptions. [Review]. Nature Reviews Genetics, 9(4), 255–266. doi:10.1038/nrg2322.CrossRefPubMedGoogle Scholar
  103. Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. [Review]. American Journal of Human Genetics, 90(1), 7–24. doi:10.1016/j.ajhg.2011.11.029.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wahlsten, D. (1990). Insensitivity of the analysis of variance to heredity–environment interaction. Behavioral and Brain Sciences, 13(1), 109–120.CrossRefGoogle Scholar
  105. Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S., … Global Lipids Genetics Consortium. (2013). Discovery and refinement of loci associated with lipid levels. Nature Genetics, 45(11), 1274–1283. doi:10.1038/ng.2797.Google Scholar
  106. Winham, S. J., & Biernacka, J. M. (2013). Gene–environment interactions in genome-wide association studies: Current approaches and new directions. Journal of Child Psychology and Psychiatry, 54(10), 1120–1134. doi:10.1111/jcpp.12114.CrossRefPubMedGoogle Scholar
  107. Wong, M. Y., Day, N. E., Luan, J. A., Chan, K. P., & Wareham, N. J. (2003). The detection of gene–environment interaction for continuous traits: Should we deal with measurement error by bigger studies or better measurement? International Journal of Epidemiology, 32(1), 51–57. doi:10.1093/ije/dyg002.CrossRefPubMedGoogle Scholar
  108. Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., … LifeLines Cohort Study. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46(11), 1173–1186. doi:10.1038/ng.3097.Google Scholar
  109. Zhu, J. W., Loos, R. J. F., Lu, L., Zong, G., Gan, W., Ye, X. W., … Lin, X. (2014). Associations of genetic risk score with obesity and related traits and the modifying effect of physical activity in a Chinese Han population. PLoS One, 9(3), e91442. doi:10.1371/journal.pone.0091442.
  110. Zondervan, K. T., & Cardon, L. R. (2004). The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 5, 89–100.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations