Skip to main content

Genetics of Inflammatory Bowel Diseases

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

The inflammatory bowel diseases, Crohn disease and ulcerative colitis, are caused by the immune system’s dysregulated response to the gut flora and environmental exposures in genetically susceptible individuals. The last 20 years have shown great progress in understanding the basis of this genetic susceptibility. The first efforts involved genetic epidemiology and family studies to show unequivocally the hereditary contribution to IBD. Later, studies utilizing sib pair linkage analysis revealed one of the first replicable associations in IBD, indeed in complex mode of inheritance diseases generally, the NOD2 polymorphisms. In 2006, the introduction of genome-wide association studies brought a new model for identifying genomic loci conferring more modest risk of IBD. Through the aggregation of many such GWAS data sets in meta-analysis, at least 200 loci have been identified that underlie the genetic susceptibility. Next-generation sequencing (NGS) studies are showing promise in specific pediatric populations with IBD or its genetic mimics. In this chapter, we will review some genetic epidemiology, specific genes identified, new approaches to identifying loci using sequencing, and genotype-phenotype correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hugot JP, Laurent-Puig P, Gower-Rousseau C, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature. 1996;379:821–3.

    Article  CAS  PubMed  Google Scholar 

  2. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  3. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  4. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duerr RH. The genetics of inflammatory bowel disease. Gastroenterol Clin North Am. 2002;31:63–76.

    Article  PubMed  Google Scholar 

  6. Basu D, Lopez I, Kulkarni A, Sellin JH. Impact of race and ethnicity on inflammatory bowel disease. Am J Gastroenterol. 2005;100:2254–61.

    Article  PubMed  Google Scholar 

  7. Weinstein TA, Levine M, Pettei MJ, Gold DM, Kessler BH, Levine JJ. Age and family history at presentation of pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2003;37:609–13.

    Article  PubMed  Google Scholar 

  8. Laharie D, Debeugny S, Peeters M, et al. Inflammatory bowel disease in spouses and their offspring. Gastroenterology. 2001;120:816–9.

    Article  CAS  PubMed  Google Scholar 

  9. Orholm M, Fonager K, Sorensen HT. Risk of ulcerative colitis and Crohn’s disease among offspring of patients with chronic inflammatory bowel disease. Am J Gastroenterol. 1999;94:3236–8.

    Article  CAS  PubMed  Google Scholar 

  10. Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol. 2000;35:1075–81.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ. 1996;312:95–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988;29:990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brant S. Update on the heritability of inflammatory bowel disease: the importance of twin studies. Inflamm Bowel Dis. 2011;17:1–5.

    Article  PubMed  Google Scholar 

  14. Lesage S, Zouali H, Cezard JP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70:845–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Moran T, Swanson E, et al. Regulation of IL-8 and IL-1beta expression in Crohn’s disease associated NOD2/CARD15 mutations. Hum Mol Genet. 2004;13:1715–25.

    Article  CAS  PubMed  Google Scholar 

  16. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol. 2004;99:2393–404.

    Article  CAS  PubMed  Google Scholar 

  17. Cummings JR, Jewell DP. Clinical implications of inflammatory bowel disease genetics on phenotype. Inflamm Bowel Dis. 2005;11:56–61.

    Article  PubMed  Google Scholar 

  18. Kugathasan S, Loizides A, Babusukumar U, et al. Comparative phenotypic and CARD15 mutational analysis among African American, Hispanic, and White children with Crohn’s disease. Inflamm Bowel Dis. 2005;11:631–8.

    Article  PubMed  Google Scholar 

  19. Weiss B, Shamir R, Bujanover Y, et al. NOD2/CARD15 mutation analysis and genotype-phenotype correlation in Jewish pediatric patients compared with adults with Crohn’s disease. J Pediatr. 2004;145:208–12.

    Article  CAS  PubMed  Google Scholar 

  20. Ahmad T, Marshall S, Jewell D. Genotype-based phenotyping heralds a new taxonomy for inflammatory bowel disease. Curr Opin Gastroenterol. 2003;19:327–35.

    Article  CAS  PubMed  Google Scholar 

  21. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta- analysis. Gut. 1999;45:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silverberg MS, Mirea L, Bull SB, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9:1–9.

    Article  PubMed  Google Scholar 

  23. Orchard TR, Chua CN, Ahmad T, Cheng H, Welsh KI, Jewell DP. Uveitis and erythema nodosum in inflammatory bowel disease: clinical features and the role of HLA genes. Gastroenterology. 2002;123:714–8.

    Article  PubMed  Google Scholar 

  24. Orchard TR, Thiyagaraja S, Welsh KI, Wordsworth BP, Hill Gaston JS, Jewell DP. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology. 2000;118:274–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yap LM, Ahmad T, Jewell DP. The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract ResClin Gastroenterol. 2004;18:577–96.

    Article  CAS  Google Scholar 

  26. Goyette P, Boucher G, Mallon D, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47:172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299:1335–44.

    Article  CAS  PubMed  Google Scholar 

  28. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    Article  CAS  PubMed  Google Scholar 

  29. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Limbergen JE, Russell RK, Nimmo ER, et al. IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut. 2007;56(8):1173–4.

    Article  CAS  PubMed  Google Scholar 

  31. Libioulle C, Louis E, Hansoul S, et al. A novel susceptibility locus for Crohn’s disease identified by whole genome association maps to a gene desert on chromosome 5p13.1 and modulates the level of expression of the prostaglandin receptor EP4. PLoS Genet. 2007;3(4):e58.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.

    Article  CAS  PubMed  Google Scholar 

  33. Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203:2473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kullberg MC, Jankovic D, Feng CG, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 2006;203:2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25:309–18.

    Article  CAS  PubMed  Google Scholar 

  36. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    Article  CAS  PubMed  Google Scholar 

  38. Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.

    Article  CAS  PubMed  Google Scholar 

  39. Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351:2069–79.

    Article  CAS  PubMed  Google Scholar 

  40. McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 2006;27:17–23.

    Article  CAS  PubMed  Google Scholar 

  41. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    Article  CAS  PubMed  Google Scholar 

  42. Rioux JD, Xavier RJ, KD T, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meinzer U, Idestrom M, Alberti C, et al. Ileal involvement is age dependent in pediatric Crohn’s disease. Inflamm Bowel Dis. 2005;11:639–44.

    Article  PubMed  Google Scholar 

  44. Levine A et al. Pediatric onset Crohn’s colitis is characterized by genotype-dependent age-related susceptibility. Inflamm Bowel Dis. 2007;13:1509–15.

    Article  PubMed  Google Scholar 

  45. Henderson P. Genetics of childhood-onset inflammatory bowel disease. Inflamm Bowel Dis. 2010;17:346–61.

    Article  Google Scholar 

  46. Imielinski M. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kugathasan S. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40:1211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amre D et al. Investigation of reported associations between the 20q13 and 21q22 loci and pediatric-onset Crohn’s disease in Canadian children. Am J Gastroenterol. 2009;104:2824–48.

    Article  CAS  PubMed  Google Scholar 

  49. Dan N, Kanai T, Totsuka T, et al. Ameliorating effect of anti-Fas ligand MAb on wasting disease in murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G754–60.

    Article  CAS  PubMed  Google Scholar 

  50. Jungbeck M, Daller B, Federhofer J, et al. Neutralization of LIGHT ameliorates acute dextran sodium sulphate-induced intestinal inflammation. Immunology. 2009;128:451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meylan F, Song YJ, Fuss I, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4:172–85.

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Anders RA, Wang Y, et al. The critical role of LIGHT in promoting intestinal inflammation and Crohn’s disease. J Immunol. 2005;174:8173–82.

    Article  CAS  PubMed  Google Scholar 

  53. Van Limbergen J et al. The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet. 2009;10:89–116.

    Article  CAS  PubMed  Google Scholar 

  54. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8:458–66.

    Article  CAS  PubMed  Google Scholar 

  55. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17:R122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol. 2007;178:4901–7.

    Article  CAS  PubMed  Google Scholar 

  59. Nakazawa A, Dotan I, Brimnes J, et al. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology. 2004;126:1347–57.

    Article  CAS  PubMed  Google Scholar 

  60. Ito T, Yang M, Wang YH, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wrackmeyer U, Hansen GH, Seya T, Danielsen EM. Intelectin: a novel lipid raft-associated protein in the enterocyte brush border. Biochemistry. 2006;45:9188–97.

    Article  CAS  PubMed  Google Scholar 

  62. Lu L, Wang J, Zhang F, et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol. 2010;184:4295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Lange KM, Barrett JC. Understanding inflammatory bowel disease via immunogenetics. J Autoimmun. 2015;64:91–100.

    Article  PubMed  Google Scholar 

  64. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661–73.

    Article  CAS  PubMed  Google Scholar 

  65. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wellcome Trust Case Control Consortium, Maller JB, McVean G, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet. 2012;44:1294–301.

    Article  Google Scholar 

  67. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steinberg MW, Turovskaya O, Shaikh RB, et al. A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med. 2008;205:1463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut. 1989;30:835–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Williams EJ, Haque S, Banks C, Johnson P, Sarsfield P, Sheron N. Distribution of the interleukin-8 receptors, CXCR1 and CXCR2, in inflamed gut tissue. J Pathol. 2000;192:533–9.

    Article  CAS  PubMed  Google Scholar 

  71. Yamazaki K, Takazoe M, Tanaka T, Kazumori T, Nakamura Y. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet. 2002;47:469–72.

    Article  CAS  PubMed  Google Scholar 

  72. Yamazaki K, McGovern D, Ragoussis J, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14:3499–506.

    Article  CAS  PubMed  Google Scholar 

  73. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62:1795–805.

    Article  CAS  PubMed  Google Scholar 

  75. Kelsen JR, Dawany N, Moran CJ, et al. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. Gastroenterology. 2015;149:1415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Worthey EA, Mayer AN, Syverson GD, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13:255–62.

    Article  PubMed  Google Scholar 

  78. Cardinale CJ, Kelsen JR, Baldassano RN, Hakonarson H. Impact of exome sequencing in inflammatory bowel disease. World J Gastroenterol. 2013;19:6721–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet. 2001;69:124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zuk O, Schaffner SF, Samocha K, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111:E455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rivas MA, Beaudoin M, Gardet A, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43:1066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beaudoin M, Goyette P, Boucher G, et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet. 2013;9:e1003723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11:773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang H, Jin X, Li Y, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014;46:45–50.

    Article  CAS  PubMed  Google Scholar 

  85. Kang J, Kugathasan S, Georges M, Zhao H, Cho JH. Improved risk prediction for Crohn’s disease with a multi-locus approach. Hum Mol Genet. 2011;20:2435–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wei Z, Wang W, Bradfield J, et al. Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. Am J Hum Genet. 2013;92:1008–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tomer G, Ceballos C, Concepcion E, Benkov KJ. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn’s disease. Am J Gastroenterol. 2003;98:2479–84.

    Article  CAS  PubMed  Google Scholar 

  88. Kugathasan S, Collins N, Maresso K, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2:1003–9.

    Article  CAS  PubMed  Google Scholar 

  89. Sun L, Roesler J, Rosen-Wolff A, et al. CARD15 genotype and phenotype analysis in 55 pediatric patients with Crohn disease from Saxony, Germany. J Pediatr Gastroenterol Nutr. 2003;37:492–7.

    Article  CAS  PubMed  Google Scholar 

  90. Wine E, Reif SS, Leshinsky-Silver E, et al. Pediatric Crohn’s disease and growth retardation: the role of genotype, phenotype, and disease severity. Pediatrics. 2004;114:1281–6.

    Article  PubMed  Google Scholar 

  91. Russell RK, Drummond HE, Nimmo EE, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11:955–64.

    Article  PubMed  Google Scholar 

  92. Roesler J, Thurigen A, Sun L, et al. Influence of CARD15 mutations on disease activity and response to therapy in 65 pediatric Crohn patients from Saxony, Germany. J Pediatr Gastroenterol Nutr. 2005;41:27–32.

    Article  CAS  PubMed  Google Scholar 

  93. Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li YR, Li J, Zhao SD, et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med. 2015;21:1018–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li YR, Zhao SD, Li J, et al. Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nat Commun. 2015;6:8442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang K, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet. 2009;84(3):399–405.

    Google Scholar 

Download references

Acknowledgment

We are most grateful to Dr. Judy H. Cho, Dr. Nancy McGreal, Dr. Zhi Wei, and Steve Baldassano (MD/PhD student) who wrote earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Cardinale MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cardinale, C.J., Hakonarson, H. (2017). Genetics of Inflammatory Bowel Diseases. In: Mamula, P., Grossman, A., Baldassano, R., Kelsen, J., Markowitz, J. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49215-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49215-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49213-1

  • Online ISBN: 978-3-319-49215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics