Skip to main content

Omics: Tools for Assessing Environmental Microbial Diversity and Composition

  • Chapter
  • First Online:
Modern Tools and Techniques to Understand Microbes

Abstract

Conventional culture-based techniques are imperative in investigating the microbial ecology of natural and anthropogenically impacted environments, but they are tremendously prejudiced and unfair in their evaluation of microbial genetic assortment by selecting a specific inhabitant of microbes. Due to current progresses in genomics and sequencing methodologies, microbial community studies using culture nondependent molecular procedures have begun a new epoch of microbial ecology. Molecular studies of ecological communities have discovered that cultivable microbial segment represents <1 % of whole number of prokaryotic species existing in any sample. Various molecular approaches based on direct isolation and analysis of genetic material, proteins, and lipids from ecological samples have been discovered and shown the structural and functional information about microbial groups. Novel molecular tactics such as genetic fingerprinting, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics are imperative and essential for determining and describing the huge microbial variety along with understanding of their synergistic behavior with biotic and abiotic ecological factors. This chapter recapitulates the latest development in molecular microbial ecology area paying attention to new methods and tactics that suggest novel understandings into phylogenetic, practical, and functional assortment of microbial assemblages. The benefits and drawbacks of normally employed molecular techniques to investigate microbial structures are also discussed along with probable applications of novel molecular approaches and how they can provide a outlook on developing technologies for environmental microbial community profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498

    Article  CAS  PubMed  Google Scholar 

  • Banfield JF, Verberkmoes NC, Hettich RL, Thelen MP (2005) Proteogenomic approaches for the molecular characterization of natural microbial communities. OMICS 9:301–333

    Article  CAS  PubMed  Google Scholar 

  • Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D'haeseleer P, Simmons BA, Quirino BF (2014) Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiol Lett 351:147–155

    Article  CAS  PubMed  Google Scholar 

  • Cong J, Yang Y, Liu X, Lu H, Liu X, Zhou J, Li D, Yin H, Ding J, Zhang Y (2015) Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep 5:10007

    Google Scholar 

  • DeAngelis KM, Wu CH, Beller HR, Brodie EL, Chakraborty R, DeSantis TZ, Fortney JL, Hazen TC, Osman SR, Singer ME, Tom LM, Andersen GL (2011) PCR amplification-independent methods for detection of microbial communities by the high-density microarray Phylochip. Appl Environ Microbiol 77:6313–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmont TO, Eren AM, Maccario L, Prestat E, Esen OC, Pelletier E, Le Paslier D, Simonet P, Vogel TM (2015) Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front. Microbiol 6:358. doi:10.3389/fmicb.2015.00358

    PubMed  PubMed Central  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakruddin M, Mannan KSB (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci 42:19–33

    Google Scholar 

  • Faust K, Lahti L, Gonze D, de Vos WM, Raes J (2015) Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol 25:56–66

    Article  PubMed  Google Scholar 

  • Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hettich RL, Pan C, Chourey K, Giannone RJ (2013) Metaproteomics: Harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 85:4203–4214. doi:10.1021/ac303053e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P. (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:0003

    Google Scholar 

  • Johnson-Rollings AS, Wright H, Masciandaro G, Macci C, Doni S, Calvo-Bado LA, Slade SE, Plou CV, Wellington EMH (2014) Exploring the functional soil-microbe interface and exoenzymes through soil metaexoproteomics. ISME J 8:2148–2150. doi:10.1038/ismej.2014.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390. doi:10.1038/ismej.2011.192

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V (2011) Laboratory manual of microbiology. Scientific, Jodhpur, pp. 101–103

    Google Scholar 

  • Kumar M, Varma A, Kumar V (2016) Ecogenomics based microbial enzyme for biofuel industry. Sci Int 4:1–11

    Article  Google Scholar 

  • Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 4:329–335

    Google Scholar 

  • Myrold DD, Zeglin LH, Jansson JK (2013) The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J 78:3–10

    Article  Google Scholar 

  • Paisie TK, Miller TE, Mason OU (2014) Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea) leaves. PLoS One 9:e113384. doi:10.1371/journal.pone.0113384

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson, WR (2013) An introduction to sequence similarity (“Homology”) searching. Curr Protoc Bioinf Jun 03. doi:10.1002/0471250953.bi0301s42

  • Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Osman S, Vaishampayan PA, Andersen GL, Stetler LD, Sani RK (2010) Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb Ecol 59:94–108

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rønn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh BK, Campbell CD, Sorenson SJ, Zhou J (2009) Soil genomics. Nat Rev Microbiol 7:756. doi:10.1038/nrmicro2119-c1

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  CAS  PubMed  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics-the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  PubMed  Google Scholar 

  • Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:e2527

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 160:197–202

    Article  CAS  PubMed  Google Scholar 

  • Wemheuer B, Wemheuer F, Daniel R (2012) RNA-based assessment of diversity and composition of active archaeal communities in the German bight. Archaea 695826:8. doi:10.1155/2012/695826

  • Werner A (2014) Horizontal gene transfer among bacteria and its role in biological evolution. Life 4:217–224

    Article  Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Ma T, Gao M, Gao P, Cao M, Zhu X, Li G (2012) Characterization of microbial diversity and community in water flooding oil reservoirs in China. World J Microbiol Biotechnol 28:3039–3052

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Ajit Varma is thankful to Department of Science and Technology and Department of Biotechnology for partial financial funding and to DST-FIST for providing confocal microscope facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, M. et al. (2017). Omics: Tools for Assessing Environmental Microbial Diversity and Composition. In: Varma, A., Sharma, A. (eds) Modern Tools and Techniques to Understand Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-49197-4_18

Download citation

Publish with us

Policies and ethics