Advertisement

Association Rule Mining with Context Ontologies: An Application to Mobile Sensing of Water Quality

  • Eliot BytyçiEmail author
  • Lule Ahmedi
  • Arianit Kurti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 672)

Abstract

Internet of Things (IoT) applications by means of wireless sensor networks (WSN) produce large amounts of raw data. These data might formally be defined by following a semantic IoT model that covers data, meta-data, as well as their relations, or might simply be stored in a database without any formal specification. In both cases, using association rules as a data mining technique may result into inferring interesting relations between data and/or metadata. In this paper we argue that the context has not been used extensively for added value to the mining process. Therefore, we propose a different approach when it comes to association rule mining by enriching it with a context-aware ontology. The approach is demonstrated by hand of an application to WSNs for water quality monitoring. Initially, new ontology, its concepts and relationships are introduced to model water quality monitoring through mobile sensors. Consequently, the ontology is populated with quality data generated by sensors, and enriched afterwards with context. Finally, the evaluation results of our approach of including context ontology in the mining process are promising: new association rules have been derived, providing thus new knowledge not inferable when applying association rule mining simply over raw data.

Keywords

Association rules Ontology Context Wireless sensor networks Internet of Things 

References

  1. 1.
    Singh, S., Vajirkar, P., Lee, Y.: Context-based data mining using ontologies. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 405–418. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39648-2_32 CrossRefGoogle Scholar
  2. 2.
    “Water Quality” (2016). http://www.grc.nasa.gov/WWW/k-12/fenlewis/Waterquality.html. Accessed 24 June 2016
  3. 3.
  4. 4.
    Jajaga, E., Ahmedi, L., Ahmedi, F.: An expert system for water quality monitoring based on ontology. In: Garoufallou, E., Hartley, R.J., Gaitanou, P. (eds.) MTSR 2015. CCIS, vol. 544, pp. 89–100. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24129-6_8 CrossRefGoogle Scholar
  5. 5.
    Ahmedi, L., Jajaga, E., Ahmedi, F.: An ontology framework for water quality management. In: Proceedings of the 6th International Conference on Semantic Sensor Networks, vol. 1063, pp. 35–50. CEUR-WS (2013)Google Scholar
  6. 6.
    Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., Zhou, Z.H.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)CrossRefGoogle Scholar
  7. 7.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisit. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  8. 8.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)Google Scholar
  9. 9.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  10. 10.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. Adv. Knowl. Discov. Data Mining 12(1), 307–328 (1996)Google Scholar
  11. 11.
    Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg, L.: Weka. In: Data Mining and Knowledge Discovery Handbook, pp. 1305–1314. Springer US (2005)Google Scholar
  12. 12.
    “D2rq”. d2rq.org/. Accessed 24 June 2016
  13. 13.
    Lavrač, N., Vavpetič, A., Soldatova, L., Trajkovski, I., Novak, P.K.: Using ontologies in semantic data mining with SEGS and g-SEGS. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS (LNAI), vol. 6926, pp. 165–178. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24477-3_15 CrossRefGoogle Scholar
  14. 14.
    Nebot, V., Berlanga, R.: Finding association rules in semantic web data. Knowl. Based Syst. 25(1), 51–62 (2012)CrossRefGoogle Scholar
  15. 15.
    Abedjan, Z., Naumann, F.: Improving RDF data through association rule mining. Datenbank-Spektrum 13(2), 111–120 (2013)CrossRefGoogle Scholar
  16. 16.
    Ahmedi, L., Sejdiu, B., Bytyçi, E., Ahmedi, F.: An integrated web portal for water quality monitoring through wireless sensor networks. Int. J. Web Portals (IJWP) 7(1), 28–46 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.University of PrishtinaPrishtinaKosovo
  2. 2.Linnaeus UniversityVäxjöSweden
  3. 3.Interactive Institute Swedish ICTNorrköpingSweden

Personalised recommendations