Advertisement

A \(\textit{Datalog}{\pm }\) Domain-Specific Durum Wheat Knowledge Base

  • Abdallah AriouaEmail author
  • Patrice Buche
  • Madalina Croitoru
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 672)

Abstract

We consider the application setting where a domain-specific knowledge base about Durum Wheat has been constructed by knowledge engineers who are not experts in the domain. This knowledge base is prone to inconsistencies and incompleteness. The goal of this work is to show how the state of the art knowledge representation formalism called \(\textit{Datalog}{\pm }\) can be used to cope with such problems by (1) providing inconsistency-tolerant techniques to cope with inconsistency, and (2) providing an expressive logical language that allows representing incomplete knowledge.

Keywords

Knowledge Base Durum Wheat Factual Knowledge Conjunctive Query Conceptual Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arvalis. Les fiches arvalis: Varits produits accidents en grandes cultures. Online materials published by ARVALIS Plant Institue (2015). http://www.fiches.arvalis-infos.fr/. Accessed 19 Mar 2015
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of IJCAI 2005 (2005)Google Scholar
  3. 3.
    Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S., Sipieter, C.: Graal: a toolkit for query answering with existential rules. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 328–344. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21542-6_21 CrossRefGoogle Scholar
  4. 4.
    Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity lines for generalized guarded existential rules. In: Proceedings of IJCAI 2011, pp. 712–717 (2011)Google Scholar
  5. 5.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)CrossRefGoogle Scholar
  6. 6.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chein, M., Mugnier, M.: Graph-Based Knowledge Representation - Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge Processing. Springer, London (2009)zbMATHGoogle Scholar
  8. 8.
    Leclère, M., Mugnier, M.-L., Rocher, S.: Kiabora: an analyzer of existential rule bases. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 241–246. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39666-3_22 CrossRefGoogle Scholar
  9. 9.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15918-3_9 CrossRefGoogle Scholar
  10. 10.
    Mugnier, M.-L., Thomazo, M.: An introduction to ontology-based query answering with existential rules. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P., Lausen, G., Weikum, G. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 245–278. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10587-1_6 Google Scholar
  11. 11.
    Sebillotte, M.: Itineraires techniques et evolution de la pensee agronomique. Comptes Rendus des Séances de l’Académie d’Agriculture de France (1978)Google Scholar
  12. 12.
    Sini, M., Yadav, V.: Building knowledge models for Agropedia Indica v 1.0 requirements, guidelines, suggestions (2009). http://agropedia.iitk.ac.in/km_guidlines.pdf. Accessed 19 Mar 2015
  13. 13.
    Sowa, J.F.: Conceptual graphs for a data base interface. IBM J. Res. Dev. 20(4), 336–357 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sowa, J.F.: Conceptual structures: information processing in mind and machine (1983)Google Scholar
  15. 15.
    Thunkijjanukij, A., Kawtrakul, A., Panichsakpatana, S., Veesommai, U.: Lesson learned for ontology construction with Thai rice case study. In: World Conference on Agricultural Information and IT, IAALD AFITA WCCA 2008, pp. 495–502 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Abdallah Arioua
    • 1
    • 2
    Email author
  • Patrice Buche
    • 2
  • Madalina Croitoru
    • 1
  1. 1.LIRMM, University of MontpellierMontpellierFrance
  2. 2.IATE, INRAMontpellierFrance

Personalised recommendations