Skip to main content

In Situ Spectroelectrochemical Fluorescence Microscopy for Visualizing Interfacial Structure and Dynamics in Self-assembled Monolayers

  • Chapter
  • First Online:

Abstract

In situ analysis of electrochemical interfaces modified with molecular adsorbates using fluorescence microscopy is outlined. The fluorescence intensity from the fluorophore-modified adsorbate is strongly quenched when the separation of the fluorophore from the metal electrode surface is decreased below 200 nm. The theory describing this important characteristic is outlined with emphasis on the lifetime and far-field intensity of the fluorophore as a function of the separation from the metal. A number of examples are given in which fluorescence microscopy is used to study surfaces modified with the self-assembled monolayers (SAMs) composed of either alkylthiols, peptides, or DNA. The ability to interrogate both the lateral and axial distributions of the adsorbed monolayers within the micron scale optical resolutions is highlighted. The influence of the electrode potential (or charge) on the fluorescence images is shown for the reductive or oxidative removal of the adsorbate. The preparation of modified electrode surfaces is also reviewed, illustrating the influence of surface crystallography on the resulting surface modification or thiol exchange processes. Preliminary results of a DNA SAM studied using 2-photon fluorescence lifetime imaging microscopy are presented, demonstrating the measurement of lifetime distributions and its correspondence with the theory. In situ spectroelectrochemical fluorescence microscopy is thus shown to be useful in studying the electrochemical interface in terms of its homogeneity of modification, the structure in the axial direction away from the electrode surface and the influence of charge (or potential) on the dynamics of the interface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kolb, D.M.: UV-visible reflectance spectroscopy. In: R.J. Gale (ed.) Spectroelectrochemistry. Plenum Press (1988). URL http://www.worldcat.org/title/spectroelectrochemistry/oclc/18739315 (Chapter 4)

  2. McIntyre, J.D.E.: Specular reflection spectroscopy of the electrode-solution interphase. In: Muller, R.H. (ed.) Advances in Electrochemistry and Electrochemical Engineering, pp. 61–166. Wiley-Inerscience, New York (1973)

    Google Scholar 

  3. Sagara, T.: UV-visible reflectance spectroscopy of thin organic films at electrode surfaces. In: Advances in Electrochemical Science and Engineering, vol. 9, pp. 47–95. Wiley-VCH Verlag GmbH, Weinheim, Germany (2006). doi:10.1002/9783527616817.ch2. URL http://doi.wiley.com/10.1002/9783527616817.ch2

  4. Sagara, T., Igarashi, S., Sato, H., Niki, K.: Voltammetric application of electromodulated electroreflection absorption spectroscopy: electroreflectance voltammetry as an in situ spectroelectrochemical technique. Langmuir 7(5), 1005–1012 (1991). doi:10.1021/la00053a032

    Article  CAS  Google Scholar 

  5. Nagatani, H., Sagara, T.: Potential-modulation spectroscopy at solid/liquid and liquid/liquid interfaces. Anal. Sci. 23(9), 1041–1048 (2007). doi:10.2116/analsci.23.1041

  6. Sagara, T., Hiasa, H., Nakashima, N.: An electroreflectance study at the bottom-surface of a mercury drop electrode placed on an underlying nafion film. Chem. Lett. 8, 783–784 (1998)

    Article  Google Scholar 

  7. Sagara, T., Kawamura, H., Nakashima, N.: Electrode reaction of methylene blue at an alkanethiol-modified gold electrode as characterized by electroreflectance spectroscopy. Langmuir (1996). doi:10.1021/la951530p

    Google Scholar 

  8. Sagara, T., Zamlynny, V., Bizzotto, D., McAlees, A., McCrindle, R., Lipkowski, J.: Spectroelectrochemical investigations of the spreading of 4-pentadecyl pyridine onto the Au(111) electrode. Israel J. Chem. 37(2–3), 197–211 (2013). doi:10.1002/ijch.199700024. URL http://doi.wiley.com/10.1002/ijch.199700024

  9. Sun, S.G., Christensen, P.A., Wieckowski, A.: In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Elsevier Science (2011)

    Google Scholar 

  10. Rosendahl, S.M., Danger, B.R., Vivek, J.P., Burgess, I.J.: Surface enhanced infrared absorption spectroscopy studies of DMAP adsorption on gold surfaces. Langmuir 25(4), 2241–2247 (2009). doi:10.1021/la803404u

    Article  CAS  Google Scholar 

  11. Uchida, T., Osawa, M., Lipkowski, J.: SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer. J. Electroanal. Chem. 716, 112–119 (2014). doi:10.1016/j.jelechem.2013.10.015. URL http://linkinghub.elsevier.com/retrieve/pii/S1572665713004645

  12. Hoon-Khosla, M., Fawcett, W.R., Chen, A., Lipkowski, J., Pettinger, B.: A SNIFTIRS study of the adsorption of pyridine at the Au(111) electrode-solution interface. Electrochim. Acta 45(4), 611–621 (1999)

    Article  CAS  Google Scholar 

  13. Iwasita, T., Nart, F.C.: In situ infrared spectroscopy at electrochemical interfaces [review]. Prog. Surf. Sci. 55(4), 271–340 (1997)

    Article  CAS  Google Scholar 

  14. Leitch, J.J., Collins, J., Friedrich, A.K., Stimming, U., Dutcher, J.R., Lipkowski, J.: Infrared studies of the potential controlled adsorption of sodium dodecyl sulfate at the Au(111) electrode surface. Langmuir 28(5), 2455–2464 (2012). doi:10.1021/la204451s

  15. Pensa, E., Vericat, C., Grumelli, D., Salvarezza, R.C., Park, S.H., Longo, G.S., Szleifer, I., Méndez De Leo, L.P.: New insight into the electrochemical desorption of alkanethiol SAMs on gold. Phys. Chem. Chem. Phys. 14(35), 12,355–12,367 (2012). doi:10.1039/c2cp41291h

  16. Zamlynny, V., Lipkowski, J.: Quantitative SNIFTIRS and PM IRRAS of organic molecules at electrode surfaces. In: Advances in Electrochemical Science and Engineering, pp. 315–376. Wiley-VCH Verlag GmbH (2008). doi:10.1002/9783527616817.ch9

  17. Zamlynny, V., Zawisza, I., Lipkowski, J.: PM FTIRRAS studies of potential-controlled transformations of a monolayer and a bilayer of 4-pentadecylpyridine, a model surfactant, adsorbed on a Au (111) electrode surface. Langmuir 19(1), 132–145 (2003). doi:10.1021/la026488u

    Article  CAS  Google Scholar 

  18. Zawisza, I., Bin, X., Lipkowski, J.: Spectroelectrochemical studies of bilayers of phospholipids in gel and liquid state on Au(111) electrode surface. Bioelectrochemistry 63(1–2), 137–147 (2004). doi:10.1016/j.bioelechem.2003.12.004

  19. Dahlin, A.B., Dielacher, B., Rajendran, P., Sugihara, K., Sannomiya, T., Zenobi-Wong, M., Voros, J.: Electrochemical plasmonic sensors. Anal. Bioanal. Chem. 402(5), 1773–1784 (2012). doi:10.1007/s00216-011-5404-6

    Article  CAS  Google Scholar 

  20. den Engelsen, D., de Koning, B.: Ellipsometric study of organic monolayers. Part 1—condensed monolayers. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 70(0), 1603–1614 (1974). doi:10.1039/F19747001603

  21. Shan, X., Patel, U., Wang, S., Iglesias, R., Tao, N.: Imaging local electrochemical current via surface plasmon resonance. Science 327(5971), 1363–1366 (2010). doi:10.1126/science.1186476

    Article  CAS  Google Scholar 

  22. Wang, Y., Shan, X., Cui, F., Li, J., Wang, S., Tao, N.: Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy. Anal. Chem. 87(1), 494–498 (2015). doi:10.1021/ac5036692

    Article  CAS  Google Scholar 

  23. Yu, Y., Jin, G.: Influence of electrostatic interaction on fibrinogen adsorption on gold studied by imaging ellipsometry combined with electrochemical methods. J. Colloid Interface Sci. 283(2), 477–481 (2005). doi:10.1016/j.jcis.2004.09.021

  24. Majewski, J., Smith, G.S., Burgess, I., Zamlynny, V., Szymanski, G., Lipkowski, J., Satija, S.: Neutron reflectivity studies of electric field driven structural transformations of surfactants. Appl. Phys. Mater. Sci. Process. 74, S364–S367 (2002)

    Article  CAS  Google Scholar 

  25. Zamlynny, V., Burgess, I., Szymanski, G., Lipkowski, J., Majewski, J., Smith, G., Satija, S., Ivkov, R.: Electrochemical and neutron reflectivity studies of spontaneously formed amphiphilic surfactant bilayers at the gold-solution interface. Langmuir 16(25), 9861–9870 (2000)

    Article  CAS  Google Scholar 

  26. Grubb, M., Wackerbarth, H., Wengel, J., Ulstrup, J.: Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA. Langmuir 23(3), 1410–1413 (2007). doi:10.1021/la062555z

    Article  CAS  Google Scholar 

  27. Hiasa, T., Onishi, H.: Mercaptohexanol assembled on gold: FM-AFM imaging in water. Colloids Surf. Physicochem. Eng. Aspects 441, 149–154 (2014). doi:10.1016/j.colsurfa.2013.09.002

  28. Josephs, E.A., Ye, T.: A single-molecule view of conformational switching of DNA tethered to a gold electrode. J. Am. Chem. Soc. 134(24), 10021–10030 (2012). doi:10.1021/ja3010946

    Article  CAS  Google Scholar 

  29. Lei, S., Feyter, S.: STM, STS and bias-dependent imaging on organic monolayers at the solid-liquid interface. In: P. Samori (ed.) STM and AFM studies on (bio)molecular systems: unravelling the nanoworld, pp. 269–312. Springer Berlin Heidelberg (2008). doi:10.1007/128_2007_23

  30. Li, M., Chen, M., Sheepwash, E., Brosseau, C.L., Li, H., Pettinger, B., Gruler, H., Lipkowski, J.: AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques. Langmuir 24(18), 10313–10323 (2008). doi:10.1021/la800800m

    Article  CAS  Google Scholar 

  31. Li, W.H., Haiss, W., Floate, S., Nichols, R.J.: In-situ infrared spectroscopic and scanning tunneling microscopy investigations of the chemisorption phases of uracil, thymine, and 3-methyl uracil on Au (111) electrodes. Langmuir 15(14), 4875–4883 (1999). doi:10.1021/la9815594

    Article  CAS  Google Scholar 

  32. Nichols, R., Haiss, W., Fernig, D., Zalinge, H., Schiffrin, D., Ulstrup, J.: In situ STM studies of immobilized biomolecules at the electrodeelectrolyte interface. In: Bioinorganic Electrochemistry, pp. 207–247. Springer Netherlands (2008). URL http://dx.doi.org/10.1007/978-1-4020-6500-2_7

  33. Pignataro, B.: Advances in SPMs for Investigation and Modification of Solid-Supported Monolayers. In: M. Tomitori, B. Bhushan, H. Fuchs (eds.) Applied Scanning Probe Methods IX, pp. 55–88. Springer Berlin Heidelberg (2008). doi:10.1007/978-3-540-74083-4_3

  34. Vericat, C., Andreasen, G., Vela, M.E., Martin, H., Salvarezza, R.C.: Following transformation in self-assembled alkanethiol monolayers on Au(111) by in situ scanning tunneling microscopy. J. Chem. Phys. 115(14), 6672–6678 (2001). doi:10.1063/1.1403000

  35. Wano, H., Uosaki, K.: In situ, real-time monitoring of the reductive desorption process of self-assembled monolayers of hexanethiol on Au (111) surfaces in acidic and alkaline aqueous solutions by scanning tunneling microscopy. Langmuir 17(26), 8224–8228 (2001). doi:10.1021/la010990h

    Article  CAS  Google Scholar 

  36. Xu, S., Chen, M., Cholewa, E., Szymanski, G., Lipkowski, J.: Electric-field-driven surface aggregation of a model zwitterionic surfactant. Langmuir 23(13), 6937–6946 (2007). doi:10.1021/la0701327

    Article  CAS  Google Scholar 

  37. Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J.: Surfaceenhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403(1), 27–54 (2011). doi:10.1007/s00216-011-5631-x

    Article  Google Scholar 

  38. Cortés, E., Etchegoin, P.G., Le Ru, E.C., Fainstein, A., Vela, M.E., Salvarezza, R.C.: Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132(51), 18034–18037 (2010). doi:10.1021/ja108989b

    Article  Google Scholar 

  39. Itoh, T., McCreery, R.L.: In situ Raman spectroelectrochemistry of electron transfer between glassy carbon and a chemisorbed nitroazobenzene monolayer. J. Am. Chem. Soc. 124(36), 10894–10902 (2002). doi:10.1021/ja020398u

    Article  CAS  Google Scholar 

  40. Oklejas, V., Harris, J.M.: In-situ investigation of binary-component self-assembled monolayers: a SERS-based spectroelectrochemical study of the effects of monolayer composition on interfacial structure. Langmuir 19(14), 5794–5801 (2003). doi:10.1021/la020916e

    Article  CAS  Google Scholar 

  41. Tian, Z.Q., Ren, B.: Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced raman spectroscopy. Ann. Rev. Phys. Chem. 55(1), 197–229 (2004). doi:10.1146/annurev.physchem.54.011002.103833

  42. Van Duyne, R.P.: Applications of Raman spectroscopy in electrochemistry. J. Phys. Colloques 38, C5–239–C5–252 (1977). doi:10.1051/jphyscol:1977531

  43. Wu, D.Y., Li, J.F., Ren, B., Tian, Z.Q.: Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37(5), 1025–1041 (2008). doi:10.1039/B707872M

  44. Wen, R., Lahiri, A., Azhagurajan, M., Kobayashi, S., Itaya, K.: A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111). J. Am. Chem. Soc (2010). doi:10.1021/ja106231x

  45. Dias, M., Hudhomme, P., Levillain, E., Perrin, L., Sahin, Y., Sauvage, F., Wartelle, C.: Electrochemistry coupled to fluorescence spectroscopy: a new versatile approach. Electrochem. Commun. 6(3), 325–330 (2004). doi:10.1016/j.elecom.2004.01.010

    Article  CAS  Google Scholar 

  46. Engstrom, R.C., Ghaffari, S., Qu, H.: Fluorescence imaging of electrode-solution interfacial processes. Anal. Chem. 64(21), 2525–2529 (1992). doi:10.1021/ac00045a012

    Article  CAS  Google Scholar 

  47. Ghaly, T., Wildt, B.E., Searson, P.C.: Electrochemical release of fluorescently labeled thiols from patterned gold surfaces. Langmuir 26(3), 1420–1423 (2010). doi:10.1021/la9032282

    Article  CAS  Google Scholar 

  48. Li, Meuse: C., Silin, V., Gaigalas, A.K., Zhang, Y.Z.: Application of electromodulated fluorescence to the study of the dynamics of Alexa 488 fluorochrome immobilized on a gold electrode. Langmuir 16(10), 4672–4677 (2000). doi:10.1021/la991192i

    Article  CAS  Google Scholar 

  49. Li, L., Ruzgas, T., Gaigalas, A.K.: Fluorescence from Alexa 488 fluorophore immobilized on a modified gold electrode. Langmuir 15(19), 6358–6363 (1999). doi:10.1021/la981704d

  50. Miomandre, F., Allain, C., Clavier, G., Audibert, J.F., Pansu, R.B., Audebert, P., Hartl, F.: Coupling thin layer electrochemistry with epifluorescence microscopy: an expedient way of investigating electrofluorochromism of organic dyes. Electrochem. Commun. 13(6), 574–577 (2011). doi:10.1016/j.elecom.2011.03.013

  51. Plummer, S.T., Bohn, P.W.: Spatial dispersion in electrochemically generated surface composition gradients visualized with covalently bound fluorescent nanospheres. Langmuir 18(10), 4142–4149 (2002). doi:10.1021/la011742o

  52. Pope, J.M., Tan, Z., Kimbrell, S.: Measurement of electric fields at rough metal surfaces by electrochromism of fluorescent probe molecules embedded in self-assembled monolayers. J. Am. Chem. Soc. 114(25), 10085–10086 (1992). doi:10.1021/ja00051a065

    Article  CAS  Google Scholar 

  53. Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press (2006)

    Google Scholar 

  54. Loudon, R.: The quantum theory of light. Clarendon Press (1973)

    Google Scholar 

  55. Milonni, P.W.: Semiclassical and quantum electrodynamical approaches in nonrelativistic radiation theory (1976)

    Google Scholar 

  56. Ford, G.W., Weber, W.H.: Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113(4), 195–287 (1984). doi:10.1016/0370-1573(84)90098-x

  57. Chance, R.R., Prock, A., Silbey, R.: Lifetime of an emitting molecule near a partially reflecting surface. J. Chem. Phys. 60(7), 2744–2748 (1974)

    Article  CAS  Google Scholar 

  58. Barnes, W.L.: Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45(4), 661–699 (1998)

    Article  CAS  Google Scholar 

  59. Chance, R.R., Prock, A., Silbey, R.: Molecular fluorescence and energy transfer near interfaces. In: Advances in Chemical Physics, pp. 1–65. John Wiley & Sons, Inc. (1978). doi:10.1002/9780470142561.ch1

  60. Novotny, L.: Allowed and forbidden light in near-field optics. I. A single dipolar light source. J. Opt. Soc. Am. A 14(1), 91–104 (1997). doi:10.1364/JOSAA.14.000091

  61. Bizzotto, D., Lipkowski, J.: Electrochemical and spectroscopic studies of the mechanism of monolayer and multilayer adsorption of an insoluble surfactant at the Au(111)| electrolyte interface. J. Electroanal. Chem. 409(1–2), 33–43 (1996). doi:10.1016/0022-0728(96)04537-8

  62. Chung, D.S., Alkire, R.C.: Confocal microscopy for simultaneous imaging of Cu electrodeposit morphology and adsorbate fluorescence. J. Electrochem. Soc. 144, 1529–1536 (1997)

    Article  CAS  Google Scholar 

  63. Pope, J.M., Buttry, D.A.: Measurements of the potential dependence of electric field magnitudes at an electrode using fluorescent probes in a self-assembled monolayer. J. Electroanal. Chem. 498(1–2), 75–86 (2001). doi:10.1016/S0022-0728(00)00268-0

  64. Bizzotto, D., Pettinger, B.: Fluorescence imaging studies of the electrochemical adsorption/desorption of octadecanol. Langmuir 15(23), 8309–8314 (1999). doi:10.1021/la990249y

  65. Bizzotto, D., Shepherd, J.L.: EPI-fluorescence microscopy studies of potential controlled changes in adsorbed thin organic films at electrode surfaces. In: Advances in Electrochemical Science and Engineering, pp. 97–126. Wiley-VCH Verlag GmbH, Weinheim, Germany (2006). doi:10.1002/9783527616817.ch3

  66. Inoué, S.: Foundations of confocal scanned imaging in light microscopy. In: Handbook of Biological Confocal Microscopy, pp. 1–19. Springer US, Boston, MA (2006). doi:10.1007/978-0-387-45524-2_1

  67. Amaro, M., Sachl, R., Jurkiewicz, P., Coutinho, A., Prieto, M., Hof, M.: Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state. Biophys. J. 107(12), 2751–2760 (2014). doi:10.1016/j.bpj.2014.10.058

    Article  CAS  Google Scholar 

  68. Bastiaens, P.I.H., Squire, A.: Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9(2), 48–52 (1999). doi:10.1016/S0962-8924(98)01410-X

  69. Becker, W.: Fluorescence lifetime imaging—techniques and applications. J. Microsc. 247(2), 119–136 (2012). doi:10.1111/j.1365-2818.2012.03618.x

    Article  CAS  Google Scholar 

  70. Berezin, M.Y., Achilefu, S.: Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110(5), 2641–2684 (2010). doi:10.1021/cr900343z

    Article  CAS  Google Scholar 

  71. Barber, P.R., Ameer-Beg, S.M., Gilbey, J., Carlin, L.M., Keppler, M., Ng, T.C., Vojnovic, B.: Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis. J. R. Soc. Interface 6(Suppl 1), S93–S105 (2009). doi:10.1098/rsif.2008.0451.focus

    Article  CAS  Google Scholar 

  72. Stockl, M.T., Herrmann, A.: Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta BBA Biomembr. 1798(7), 1444–1456 (2010). doi:10.1016/j.bbamem.2009.12.015

    Article  CAS  Google Scholar 

  73. Pawley, J.B.: Fundamental limits in confocal microscopy. In: Handbook of Biological Confocal Microscopy, pp. 20–42. Springer US, Boston, MA (2006). doi:10.1007/978-0-387-45524-2_2

  74. Ustione, A., Piston, D.W.: A simple introduction to multiphoton microscopy. J. Microsc. 243(3), 221–226 (2011). doi:10.1111/j.1365-2818.2011.03532.x

    Article  CAS  Google Scholar 

  75. Denk, W., Piston, D.W., Webb, W.W.: Multi-photon molecular excitation in laser-scanning microscopy. In: Handbook of Biological Confocal Microscopy, pp. 535–549. Springer US, Boston, MA (2006). doi:10.1007/978-0-387-45524-2_28

  76. Drobizhev, M., Makarov, N.S., Tillo, S.E., Hughes, T.E., Rebane, A.: Two-photon absorption properties of fluorescent proteins. Nat. Methods 8(5), 393–399 (2011). doi:10.1038/nmeth.1596

    Article  CAS  Google Scholar 

  77. Bigelow,W.C., Pickett, D.L., Zisman,W.A.: Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1(6), 513–538 (1946). doi:10.1016/0095-8522(46)90059-1

  78. Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., Nuzzo, R.G.: Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111(1), 321–335 (1989). doi:10.1021/ja00183a049

    Article  CAS  Google Scholar 

  79. Folkers, J.P., Zerkowski, J.A., Laibinis, P.E., Seto, C.T., Whitesides, G.M.: Designing ordered molecular arrays in two and three dimensions. In: Supramolecular Architecture, pp. 10–23. American Chemical Society (1992). doi:10.1021/bk-1992-0499.ch002

  80. Li, Z., Chang, S.C., Williams, R.S.: Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir 19(17), 6744–6749 (2003). doi:10.1021/la034245b

    Article  CAS  Google Scholar 

  81. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M.: Self-assembled monolayers of Thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1170 (2005). doi:10.1021/cr0300789

    Article  CAS  Google Scholar 

  82. Nuzzo, R.G., Allara, D.L.: Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105(13), 4481–4483 (1983). doi:10.1021/ja00351a063

    Article  CAS  Google Scholar 

  83. Strong, L., Whitesides, G.M.: Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4(3), 546–558 (1988). doi:10.1021/la00081a009

    Article  CAS  Google Scholar 

  84. Hickman, J.J., Ofer, D., Laibinis, P.E., Whitesides, G.M., Wrighton, M.S.: Molecular self-assembly of two-terminal, voltammetric microsensors with internal references. Science 252(5006), 688–691 (1991). doi:10.1126/science.252.5006.688

  85. Schierbaum, K.D., Weiss, T., van Veizen, E.U.T., Engbersen, J.F.J., Reinhoudt, D.N., Gopel, W.: Molecular recognition by self-assembled monolayers of cavitand receptors. Science 265(5177), 1413–1415 (1994). doi:10.1126/science.265.5177.1413

  86. Chaki, N.K., Vijayamohanan, K.: Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 17(1–2), 1–12 (2002). doi:10.1016/S0956-5663(01)00277-9

  87. Akiba, U, Fujihira, M.: Preparation of self-assembled monolayers (SAMs) on Au and Ag. In: Encyclopedia of Electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2007). doi:10.1002/9783527610426.bard100121

  88. Jamison, A.C., Chinwangso, P., Lee, T.R.: Self-assembled monolayers: the development of functional nanoscale films. In: Functional Polymer Films, pp. 151–217. Wiley-VCH Verlag GmbH & Co. KGaA (2011). doi:10.1002/9783527638482.ch5

  89. Schreiber, F.: Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65(5–8), 151–257 (2000). doi:10.1016/S0079-6816(00)00024-1

  90. Schreiber, F.: Self-assembled monolayers: from ‘simple’ model systems to biofunctionalized interfaces. J. Phys. Condensed Matter 16(28), R881 (2004). doi:10.1088/0953-8984/16/28/R01

  91. Finklea, H.O.: Self-assembled monolayers on electrodes. In: Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. (2006). doi:10.1002/9780470027318.a5315

  92. Lakowicz, J.R.: Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337(2), 171–194 (2005). doi:10.1016/j.ab.2004.11.026

  93. Finklea, H.O.: Electrochemistry of organized monolayers of thiols and related molecules on electrodes. Electroanal. Chem. Ser. Adv. 19(19), 109–335 (1996)

    CAS  Google Scholar 

  94. Schneider, T.W., Buttry, D.A.: Electrochemical quartz crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold. J. Am. Chem. Soc. 115(26), 12391–12397 (1993). doi:10.1021/ja00079a021

    Article  CAS  Google Scholar 

  95. Sun, K., Jiang, B., Jiang, X.: Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. J. Electroanal. Chem. 656(1–2), 223–230 (2011). doi:10.1016/j.jelechem.2010.11.008

  96. Xu, J., Li, H.L.: The chemistry of self-assembled long-chain alkanethiol monolayers on gold. J. Colloid Interface Sci. 176(1), 138–149 (1995). doi:10.1006/jcis.1995.0017

  97. Yang, D.F., Al-Maznai, H., Morin, M.: Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode. J. Phys. Chem. B 101(7), 1158–1166 (1997). doi:10.1021/jp962247h

    Article  CAS  Google Scholar 

  98. Zhong, C.J., Porter, M.D.: Fine structure in the voltammetric desorption curves of alkanethiolate monolayers chemisorbed at gold. J. Electroanal. Chem. 425(1–2), 147–153 (1997). doi:10.1016/S0022-0728(96)04957-1

  99. Doneux, T., Steichen, M., De Rache, A., Buess-Herman, C.: Influence of the crystallographic orientation on the reductive desorption of self-assembled monolayers on gold electrodes. J. Electroanal. Chem. 649(1–2), 164–170 (2010). doi:10.1016/j.jelechem.2010.02.032

  100. Doneux, T., Nichols, R.J., Buess-Herman, C.: Dissolution kinetics of octadecanethiolate monolayers electro-adsorbed on Au(111). J. Electroanal. Chem. 621(2), 267–276 (2008). doi:10.1016/j.jelechem.2008.01.008

  101. Doneux, T., Steichen, M., Bouchta, T., Buess-Herman, C.: Mixed self-assembled monolayers of 2-mercaptobenzimidazole and 2-mercaptobenzimidazole-5-sulfonate: determination and control of the surface composition. J. Electroanal. Chem. 599(2), 241–248 (2007). doi:10.1016/j.jelechem.2006.03.006

  102. Porter, M.D., Bright, T.B., Allara, D.L., Chidsey, C.E.D.: Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109(12), 3559–3568 (1987). doi:10.1021/ja00246a011

    Article  CAS  Google Scholar 

  103. Rez, P.R.I., Andreu, R., Calvente, J.J., Calzado, C.J., Rez, G.L.O.P.P.E.: Electrochemical formation and electron transfer through self-assembled monolayers of 4-mercaptophenol on mercury. J. Electroanal. Chem. 582(1–2), 179–190 (2005). doi:10.1016/j.jelechem.2005.01.035

  104. Yang, D.F., Wilde, C.P., Morin, M.: Electrochemical desorption and adsorption of nonyl mercaptan at gold single crystal electrode surfaces. Langmuir 12(26), 6570–6577 (1996). doi:10.1021/la960365q

    Article  CAS  Google Scholar 

  105. Walczak, M.M., Popenoe, D.D., Deinhammer, R.S., Lamp, B.D., Chung, C., Porter, M.D.: Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage. Langmuir 7(11), 2687–2693 (1991). doi:10.1021/la00059a048

    Article  CAS  Google Scholar 

  106. Kunze, J., Leitch, J., Schwan, A.L., Faragher, R.J., Naumann, R., Schiller, S., Knoll, W., Dutcher, J.R., Lipkowski, J.: New method to measure packing densities of self-assembled thiolipid monolayers. Langmuir 22(12), 5509–5519 (2006). doi:10.1021/la0535274

  107. Laredo, T., Leitch, J., Chen, M., Burgess, I., Dutcher, J., Lipkowski, J.: Measurement of the charge number per adsorbed molecule and packing densities of self-assembled long-chain monolayers of thiols. Langmuir 23(11), 6205–6211 (2007)

    Article  CAS  Google Scholar 

  108. Choi, S., Chae, J.: Reusable biosensors via in situ electrochemical surface regeneration in microfluidic applications. Biosens. Bioelectron. 25(2), 527–531 (2009). doi:10.1016/j.bios.2009.08.003

  109. Kim, Y.R., Kim, H.J., Lee, M.H., Kang, Y.J., Yang, Y., Kim, H., Kim, J.S.: Electrochemically programmed chemodosimeter on ultrathin platinum films. Chem. Commun. 46(44), 8448–8450 (2010). doi:10.1039/C0CC02528C

    Article  CAS  Google Scholar 

  110. Orive, A.G., Grumelli, D., Vericat, C., Ramallo-Lopez, J.M., Giovanetti, L., Benitez, G., Azcarate, J.C., Corthey, G., Fonticelli, M.H., Requejo, F.G., Creus, A.H., Salvarezza, R.C.: “Naked” gold nanoparticles supported on HOPG: melanin functionalization and catalytic activity. Nanoscale 3(4), 1708–1716 (2011). doi:10.1039/C0NR00911C

    Article  CAS  Google Scholar 

  111. Inaba, R., Khademhosseini, A., Suzuki, H., Fukuda, J.: Electrochemical desorption of self-assembled monolayers for engineering cellular tissues. Biomaterials 30(21), 3573–3579 (2009). doi:10.1016/j.biomaterials.2009.03.045

  112. Mali, P., Bhattacharjee, N., Searson, P.C.: Electrochemically programmed release of biomolecules and nanoparticles. Nano Lett. 6(6), 1250–1253 (2006). doi:10.1021/nl0609302

    Article  CAS  Google Scholar 

  113. Yuan, M., Zhan, S., Zhou, X., Liu, Y., Feng, L., Lin, Y., Zhang, Z., Hu, J.: A method for removing self-assembled monolayers on gold. Langmuir 24(16), 8707–8710 (2008). doi:10.1021/la800287e

    Article  CAS  Google Scholar 

  114. Shepherd, J.L., Kell, A., Chung, E., Sinclar, C.W., Workentin, M.S., Bizzotto, D.: Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy. Journal of the American Chemical Society 126(26), 8329–8335 (2004). doi:10.1021/ja0494095

  115. Casanova-Moreno, J.R., Bizzotto, D.: What happens to the Thiolates created by reductively desorbing SAMs? An in situ study using fluorescence microscopy and electrochemistry. Langmuir 29(6), 2065–2074 (2013). doi:10.1021/la305170c

  116. Trasatti, S.: Structuring of the solvent at metal/solution interfaces and components of the electrode potential. J. Electroanal. Chem. Interfac. Electrochem. 150, 1–15 (1983). doi:10.1016/S0022-0728(83)80183-1

  117. Clavilier, J., Faure, R., Guinet, G., Durand, R.: Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the 111 and 110 planes. J. Electroanal. Chem. Interfacial Electrochem. 107(1), 205–209 (1979). doi:10.1016/S0022-0728(79) 80022-4

  118. Bergström, F., Mikhalyov, I., Hägglöf, P., Wortmann, R., Ny, T., Johansson, L.B.A.: Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and Biology. J. Am. Chem. Soc. 124(2), 196–204 (2002). doi:10.1021/ja010983f

    Article  Google Scholar 

  119. Tleugabulova, D., Zhang, Z., Brennan, J.D.: Characterization of bodipy dimers formed in a molecularly confined environment. J. Phys. Chem. B 106(51), 13133–13138 (2002). doi:10.1021/jp027126y

    Article  CAS  Google Scholar 

  120. Musgrove, A., Kell, A., Bizzotto, D.: Fluorescence imaging of the oxidative desorption of a BODIPY-alkyl-thiol monolayer coated Au bead. Langmuir 24(15), 7881–7888 (2008). doi:10.1021/la800233c

  121. Widrig, C.A., Chung, C., Porter, M.D.: The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J. Electroanal. Chem. Interfac. Electrochem. 310(1–2), 335–359 (1991). doi:10.1016/0022-0728(91)85271-P

  122. Poirier, G.E.: Coverage-dependent phases and phase stability of decanethiol on Au(111). Langmuir 15(4), 1167–1175 (1999). doi:10.1021/la981374x

    Article  CAS  Google Scholar 

  123. Gatto, E., Venanzi, M.: Self-assembled monolayers formed by helical peptide building blocks: a new tool for bioinspired nanotechnology. Polym. J. 45, 468–480 (2013). doi:10.1038/pj.2013.27

    Article  CAS  Google Scholar 

  124. Toniolo, C., Crisma, M., Formaggio, F., Peggion, C., Broxterman, Q.B., Kaptein, B.: Molecular spacers for physicochemical investigations based on novel helical and extended peptide structures. Biopolymers 76(2), 162–176 (2004). doi:10.1002/bip.10575

    Article  CAS  Google Scholar 

  125. Shin, Y.G.K., Newton, M.D., Isied, S.S.: Distance dependence of electron transfer across peptides with different secondary structures: the role of peptide energetics and electronic coupling. J. Am. Chem. Soc 125(13), 3722–3732 (2003). doi:10.1021/ja020358q

  126. Fabris, L., Antonello, S., Armelao, L., Donkers, R.L., Polo, F., Toniolo, C., Maran, F.: Gold nanoclusters protected by conformationally constrained peptides. J. Am. Chem. Soc. 128(1), 326–336 (2006). doi:10.1021/ja0560581

    Article  CAS  Google Scholar 

  127. Perera, N.V., Isley, W., Flavio, M., Gascón, J.A.: Molecular modeling characterization of a conformationally constrained monolayer-protected gold cluster. J. Phys. Chem. C 114(38), 16043–16050 (2010). doi:10.1021/jp102585n

    Article  CAS  Google Scholar 

  128. Kaplan, J.M., Shang, J., Gobbo, P., Antonello, S., Armelao, L., Chatare, V., Ratner, D.M., Andrade, R.B., Maran, F.: Conformationally constrained functional peptide monolayers for the controlled display of bioactive carbohydrate ligands. Langmuir 29, 8187–8192 (2013). doi:10.1021/la4008894

    Article  CAS  Google Scholar 

  129. Gatto, E., Porchetta, A., Scarselli, M., De Crescenzi, M., Formaggio, F., Toniolo, C., Venanzi, M.: Playing with peptides: how to build a supramolecular peptide nanostructure by exploiting helix···helix macrodipole interactions. Langmuir 28(5), 2817–2826 (2012). doi:10.1021/la204423d

    Article  CAS  Google Scholar 

  130. Gatto, E., Stella, L., Formaggio, F., Toniolo, C., Lorenzelli, L., Venanzi, M.: Electroconductive and photocurrent generation properties of self-assembled monolayers formed by functionalized, conformationally-constrained peptides on gold electrodes. J. Pept. Sci. 14(2), 184–191 (2008). doi:10.1002/psc.973

    Article  CAS  Google Scholar 

  131. Gatto, E., Venanzi, M., Palleschi, A., Stella, L., Pispisa, B., Lorenzelli, L., Toniolo, C., Formaggio, F., Marletta, G.: Self-assembled peptide monolayers on interdigitated gold microelectrodes. Mater. Sci. Eng. C 27, 1309–1312 (2007). doi:10.1016/j.msec.2006.07.013

  132. Pace, G., Venanzi, M., Castrucci, P., Scarselli, M., De Crescenzi, M., Palleschi, A., Stella, L., Formaggio, F., Toniolo, C., Marletta, G.: Static and dynamic features of a helical hexapeptide chemisorbed on a gold surface. Mater. Sci. Eng. C 26, 918–923 (2006). doi:10.1016/j.msec.2005.09.078

  133. Venanzi, M., Pace, G., Palleschi, A., Stella, L., Castrucci, P., Scarselli, M., De Crescenzi, M., Formaggio, F., Toniolo, C., Marletta, G.: Densely-packed selfassembled monolayers on gold surfaces from a conformationally constrained helical hexapeptide. Surf. Sci. 600, 409–416 (2006). doi:10.1016/j.susc.2005.10.040

  134. Hamelin, A., Martins, A.M.: Cyclic voltammetry at gold single-crystal surfaces. Part 2. Behaviour of high-index faces. J. Electroanal. Chem. 407(1–2), 13–21 (1996). doi:10.1016/0022-0728(95)04500-7

  135. de Levie, R.: A simple empirical correlation between the potential of zero charge and the density of broken bonds. J. Electroanal. Chem. Interfac. Electrochem. 280(1), 179–183 (1990). doi:10.1016/0022-0728(90)87093-Y

  136. Yu, Z.L., Casanova-Moreno, J., Guryanov, I., Maran, F., Bizzotto, D.: Influence of surface structure on single or mixed component self-assembled monolayers via in situ spectroelectrochemical fluorescence imaging of the complete stereographic triangle on a single crystal Au bead electrode. J. Am. Chem. Soc. 137(1), 276–288 (2015). doi:10.1021/ja5104475

  137. Peggion, C., Crisma, M., Toniolo, C., Formaggio, F.: A solvent-dependent peptide spring unraveled by 2D-NMR. Tetrahedron 68(23), 4429–4433 (2012)

    Article  CAS  Google Scholar 

  138. Cheng, A.K.H., Sen, D., Yu, H.Z.: Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry 77(1), 1–12 (2009). doi:10.1016/j.bioelechem.2009.04.007

  139. Cosnier, S.: Electrochemical biosensors. Pan stanford series on the high-tech of biotechnology. Pan stanford (2015)

    Google Scholar 

  140. Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003). doi:10.1038/nbt873

    Article  CAS  Google Scholar 

  141. Fang, Z., Soleymani, L., Pampalakis, G., Yoshimoto, M., Squire, J.A., Sargent, E.H., Kelley, S.O.: Direct profiling of cancer biomarkers in tumor tissue using a multiplexed nanostructured microelectrode integrated circuit. ACS Nano 3(10), 3207–3213 (2009). doi:10.1021/nn900733d

    Article  CAS  Google Scholar 

  142. Ferguson, B.S., Hoggarth, D.A., Maliniak, D., Ploense, K., White, R.J., Woodward, N., Hsieh, K., Bonham, A.J., Eisenstein, M., Kippin, T.E., Plaxco, K.W., Soh, H.T.: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5(213), 213ra165–213ra165 (2013). doi:10.1126/scitranslmed.3007095

  143. Grieshaber, D., MacKenzie, R., Voros, J., Reimhult, E.: Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008). doi:10.3390/s8031400

  144. Li, C.Z., Long, Y.T., Sutherland, T., Lee, J.S., Kraatz, H.B.: Electronic biosensors based on DNA self-assembled monolayer on gold electrodes. In: Frontiers in Biochip Technology, pp. 274–291. Springer US, Boston (2006). doi:10.1007/0-387-25585-0_17

  145. Li, N., Kerman, K.: Nanomaterial-based dual detection platforms: optics meets electrochemistry. In: Nanobiosensors and Nanobioanalyses, pp. 99–120. Springer Japan, Tokyo (2015). doi:10.1007/978-4-431-55190-4_6

  146. Ronkainen, N.J., Halsall, H.B., Heineman, W.R.: Electrochemical biosensors. Chem. Soc. Rev. 39(5), 1747–1763 (2010). doi:10.1039/B714449K

  147. Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006). doi:10.1016/j.bios.2005.10.027

  148. Wang, Y., Li, C., Li, X., Li, Y., Kraatz, H.B.: Unlabeled hairpin-DNA probe for the detection of single-nucleotide mismatches by electrochemical impedance spectroscopy. Anal. Chem. 80(6), 2255–2260 (2008). doi:10.1021/ac7024688

  149. Peterson, A.W., Heaton, R.J., Georgiadis, R.M.: The effect of surface probe density on DNA hybridization. Nucl. Acids Res. 29(24), 5163–5168 (2001). doi:10.1093/nar/29.24.5163

  150. Steel, A.B., Herne, T.M., Tarlov, M.J.: Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70(22), 4670–4677 (1998). doi:10.1021/ac980037q

    Article  CAS  Google Scholar 

  151. Josephs, E.A., Ye, T.: Electric-field dependent conformations of single DNA molecules on a model biosensor surface. Nano Lett. 12(10), 5255–5261 (2012). doi:10.1021/nl3024356

  152. Josephs, E.A., Ye, T.: Nanoscale spatial distribution of thiolated DNA on model nucleic acid sensor surfaces. ACS Nano 7(4), 3653–3660 (2013). doi:10.1021/nn400659m

    Article  CAS  Google Scholar 

  153. Murphy, J.N., Cheng, A.K.H., Yu, H.Z., Bizzotto, D.: On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 131(11), 4042–4050 (2009). doi:10.1021/ja808696p

    Article  CAS  Google Scholar 

  154. Casanova-Moreno, J., Bizzotto, D.: A method for determining the actual rate of orientation switching of DNA self-assembled monolayers using optical and electrochemical frequency response analysis. Anal. Chem. 87(4), 2255–2263 (2015). doi:10.1021/ac503919a

  155. Casanova-Moreno, J.R., Bizzotto, D.: Frequency response analysis of potential-modulated orientation changes of a DNA self assembled layer using spatially resolved fluorescence measurements. Electrochim. Acta 162, 62–71 (2015). doi:10.1016/j.electacta.2014.09.037

  156. Kaiser, W., Rant, U.: Conformations of end-tethered DNA molecules on gold surfaces: influences of applied electric potential, electrolyte screening, and temperature. J. Am. Chem. Soc. 132(23), 7935–7945 (2010). doi:10.1021/ja908727d

    Article  CAS  Google Scholar 

  157. Langer, A., Hampel, P.A., Kaiser, W., Knezevic, J., Welte, T., Villa, V., Maruyama, M., Svejda, M., J a hner, S., Fischer, F., Strasser, R., Rant, U.: Protein analysis by time-resolved measurements with an electro-switchable DNA chip. Nat Commun 4 (2013). doi:10.1038/ncomms3099

  158. Langer, A., Kaiser, W., Svejda, M., Schwertler, P., Rant, U.: Molecular dynamics of DNA-protein conjugates on electrified surfaces: solutions to the drift-diffusion equation. J. Phys. Chem. B 118(2), 597–607 (2014). doi:10.1021/jp410640z

    Article  CAS  Google Scholar 

  159. Rant, U., Arinaga, K., Tornow, M., Kim, Y.W., Netz, R.R., Fujita, S., Yokoyama, N., Abstreiter, G.: Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface. Biophys. J. 90(10), 3666–3671 (2006). doi:10.1529/biophysj.105.078857

  160. Knezevic, J., Langer, A., Hampel, P.A., Kaiser, W., Strasser, R., Rant, U.: Quantitation of affinity, avidity, and binding kinetics of protein analytes with a dynamically switchable biosurface. J. Am. Chem. Soc. 134(37), 15225–15228 (2012). doi:10.1021/ja3061276

    Article  CAS  Google Scholar 

  161. Rant, U., Arinaga, K., Scherer, S., Pringsheim, E., Fujita, S., Yokoyama, N., Tornow, M., Abstreiter, G.: Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets. Proc. Natl. Acad. Sci. USA 104(44), 17,364–17,369 (2007). doi:10.1073/pnas.0703974104

  162. Rant, U., Pringsheim, E., Kaiser, W., Arinaga, K., Knezevic, J., Tornow, M., Fujita, S., Yokoyama, N., Abstreiter, G.: Detection and size analysis of proteins with switchable DNA layers. Nano Lett. 9(4), 1290–1295 (2009). doi:10.1021/nl8026789

    Article  CAS  Google Scholar 

  163. Baumann, C.G., Smith, S.B., Bloomfield, V.A., Bustamante, C.: Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA 94(12), 6185–6190 (1997)

    Google Scholar 

  164. Brunet, A., Tardin, C., Salomé, L., Rousseau, P., Destainville, N., Manghi, M.: Dependence of DNA persistence length on ionic strength of solutions with monovalent and divalent salts: a joint theory-experiment study. Macromolecules 48(11), 3641–3652 (2015). doi:10.1021/acs.macromol.5b00735

    Article  CAS  Google Scholar 

  165. Yellen, G., Mongeon, R.: Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27, 24–30 (2015). doi:10.1016/j.cbpa.2015.05.024

    Article  CAS  Google Scholar 

  166. Lee, K.C., Siegel, J., Webb, S.E., Lévêque-Fort, S., Cole, M.J., Jones, R., Dowling, K., Lever, M.J., French, P.M.: Application of the stretched exponential function to fluorescence lifetime imaging. Biophys. J. 81(3), 1265–1274 (2001). doi:10.1016/S0006-3495(01)75784-0

  167. Casanova Moreno, J.R.: Spectroelectrochemical characterization of ultrathin organic films deposited on electrode surfaces. Ph.D. thesis, University of British Columbia (2014)

    Google Scholar 

  168. Mikhalyov, I., Gretskaya, N., Bergström, F., Johansson, L.B.A.: Electronic ground and excited state properties of dipyrrometheneboron difluoride (BODIPY): dimers with application to biosciences. Phys. Chem. Chem. Phys. 4(22), 5663–5670 (2002). doi:10.1039/B206357N

    Article  CAS  Google Scholar 

  169. Forster, B., Van De Ville, D., Berent, J., Sage, D., Unser, M.: Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microsc. Res. Tech. 65(1–2), 33–42 (2004). doi:10.1002/jemt.20092

    Article  Google Scholar 

  170. de Lausanne, E.c.P.F.e.d.e.r.: BIG Extended Depth of Field. Tech. rep. (2011). URL http://bigwww.epfl.ch/demo/edf/

  171. Johnson, I.: The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Advanced Materials and Processing Engineering Laboratory (AMPEL), the Mechanical and Electronic Shops in the Department of Chemistry (UBC), and Laboratory for Advanced Spectroscopy and Imaging Research (LASIR) for continued support of the development of this methodology. We would also like to acknowledge the assistance by Dr. S. Kamal in using and adapting the two-photon FLIM microscope for use with the spectroelectrochemical cell. The HS-C10-BODIPY and HS-Aib4-BODIPY molecules were gratefully provided by Prof. M. Workentin (Western University) and Prof. F. Maran (University of Padova), respectively. We would also like to thank Prof C. Buess-Herman and Dr. T. Doneux of the Université Libre de Bruxelles for very helpful discussions and collaboration on method development. Funding for this work was provided by NSERC (Canada) through the Discovery Grant and RTI programs. JCM benefited from a scholarship by CONACYT (Mexico) for his graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Bizzotto .

Editor information

Editors and Affiliations

Appendix

Appendix

Glassblowing instruction for making the spectroelectrochemical cells. The process developed in the UBC chemistry glass shop to create the cells involves a borofloat window of the appropriate diameter and the tubing to match. The addition of ports and the location of the ports are added as requested. Most of the cells manufactured have 4 ports around the main or top joint, with a further 3–4 on the cell body. The ports on the cell body were straight through or ring seals with stems and stopcocks to direct material to the window at the bottom of the cell.

The first step is the manufacture of the cell bodies with the main or top joint (standard taper 14/23 socket). These have been made primarily from 38-mm borosilicate tubing as this diameter matches the 1.5″ windows. Cells have been made from (1″) 25.5 mm to (2″) 50 mm with (1.5″) 38 mm proving to be the most resilient. The glass joints are sealed to the tubing with an effort to maintain a shoulder for the positioning of future ports. The main body of the cell will then be pulled to a point leaving tubing to the length requested. This step is usually repeated several times to maintain a “stock” of cell bodies in preparation for sealing the windows onto the bottom of the tubing.

The bottom of the main bodies of the cells are cut using a wet saw and then washed with tap water to remove any excess grit. The cell bodies are then ready for polishing using diamond pads. Beginning with 200 grit, the bottom of the cell is polished and then rinsed with tap water. Next diamond pads with 400 grit, 500 grit, 800 grit, and finally 1500 grit were used. This is done in an effort to allow the window to seal to the cell body using less heat.

Sealing the windows onto the cell body is done with the use of a glass lathe, with the cell body in a holder using the 14/23 joint at the head stock and a 30-mm carbon rod held in the tail stock. A window is placed between the cell body and the carbon rod. The window is then sandwiched between the carbon and glass cell body and set to slowly rotate with a hand torch gently heating the bottom of the cell body and window. The torch tip used on the national hand torch is size one, which allows for a very sharp, tight fire. The fire needs to be quickly adjustable from a gassy soft fire to a strong sharp oxygen rich fire as the window and cell body warm up and are ready to be sealed.

Using a carbon paddle to ensure that the window remains in contact with the cell body, the hand torch fire is sharpened and sealing the window is started. Once a light tacking of the window occurs with the cell body, the carbon rod is withdrawn a short distance from the window face. If the carbon rod remains too long on the window, the window will be distorted and conform to the carbon rod.

Fusing the window to the cell body can begin with special regard for the wash of the torch flame. Any incidental heat can and will melt the window which can be heard flexing from the heat at this point in the procedure. The polishing done to the bottom of the cell body facilitates a quick seal between the window and cell body.

Once the window is attached, the cell is placed in a hot oven to anneal. This is usually the time that stress can cause the window to shatter; every effort needs to be taken to protect the new seal from sharp changes in temperature. These seals can be so sensitive that the barometric pressure affects the likelihood of survival; this is a speculative explanation for windows failing to survive the experience of being sealed onto the cell.

Once the windows have been annealed to 565 °C, they are very resilient to temperature changes. This allows the ports to be sealed on the cell usually beginning from the top ports around the main joint and then down the cell body to the window. The only special care that needs to be taken is to protect the window from blunt force.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Casanova-Moreno, J., Yu, Z.L., Massey-Allard, J., Ditchburn, B., Young, J.F., Bizzotto, D. (2017). In Situ Spectroelectrochemical Fluorescence Microscopy for Visualizing Interfacial Structure and Dynamics in Self-assembled Monolayers. In: Miomandre, F., Audebert, P. (eds) Luminescence in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-49137-0_2

Download citation

Publish with us

Policies and ethics