Steps in Assessing a Timeline-Based Planner

  • Alessandro Umbrico
  • Amedeo Cesta
  • Marta Cialdea Mayer
  • Andrea Orlandini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

The “timeline-based” is a particular paradigm of temporal planning that has been successfully applied in many real-world scenarios. Different timeline-based planning systems have been developed, each using its own planning specification language and solving techniques. An analysis of the differences between such kind systems has not been addressed yet. In previous work we have developed Epsl  a planning tool successfully applied in real-world manufacturing scenarios. During subsequent projects our tool achieved a level of stability and a relative maturity. In this paper we start addressing the problem of comparison with other timeline-based planners and presents an analysis that concerns the Europa2 framework which can be considered the de-facto standard for timeline-based planning. In the present work we analyze the modeling and solving capabilities of the two frameworks. This phase of our study identifies differences and discusses strengths and weaknesses when solving the same problem.

Keywords

Timeline-based planning Planning and Scheduling Constraint-based planning 

References

  1. 1.
    Muscettola, N.: HSTS: Integrating planning and scheduling. In: Zweben, M., Fox, M.S. (eds.) Intelligent Scheduling. Morgan Kauffmann (1994)Google Scholar
  2. 2.
    Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in interplanetary space: theory and practice. In: Proceedings of the Fifth International Conference on AI Planning and Scheduling. AIPS-00 (2000)Google Scholar
  3. 3.
    Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated autonomous systems. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. AAMAS-10 (2010)Google Scholar
  4. 4.
    Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture for a reconfigurable manufacturing system. In: The 26th International Conference on Automated Planning and Scheduling (ICAPS) (2016)Google Scholar
  5. 5.
    Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: a platform for AI planning, scheduling, constraint programming, and optimization. In: The 4th International Competition on Knowledge Engineering for Planning and Scheduling. ICKEPS 2012 (2012)Google Scholar
  6. 6.
    Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: 2nd International Conference on Artificial Intelligence Planning and Scheduling (AIPS), pp. 61–67 (1994)Google Scholar
  7. 7.
    Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T., Stebbins, G., Tran, D.: ASPEN - automated planning and scheduling for space mission operations. In: Proceedings of Space Ops 2000 (2000)Google Scholar
  8. 8.
    Cesta, A., Fratini, S.: The timeline representation framework as a planning and scheduling software development environment. In: Proceedings of the 27th Workshop of the UK Planning and Scheduling Special Interest Group. PlanSIG-08, Edinburgh, 11–12 December 2008Google Scholar
  9. 9.
    Cimatti, A., Micheli, A., Roveri, M.: Timelines with temporal uncertainty. In: 27th AAAI Conference on Artificial Intelligence (AAAI) (2013)Google Scholar
  10. 10.
    Cialdea Mayer, M., Orlandini, A., Umbrico, A.: A formal account of planning with flexible timelines. In: The 21st International Symposium on Temporal Representation and Reasoning (TIME), pp. 37–46. IEEE (2014)Google Scholar
  11. 11.
    Mayer, Cialdea: M., Orlandini, A., Umbrico, A.: Planning and execution with flexible timelines: a formal account. Acta Informatica 53(6), 649–680 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Flexible timeline-based plan verification. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 49–56. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04617-9_7 CrossRefGoogle Scholar
  13. 13.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing flexible timeline plan. In: Proceedings of the 19th European Conference on Artificial Intelligence. ECAI 2010, vol. 215. IOS Press (2010)Google Scholar
  14. 14.
    Cialdea Mayer, M., Orlandini, A.: An executable semantics of flexible plans in terms of timed game automata. In: The 22nd International Symposium on Temporal Representation and Reasoning (TIME). IEEE (2015)Google Scholar
  15. 15.
    Gigante, N., Montanari, A., Cialdea Mayer, M., Orlandini, A.: Timelines are expressive enough to capture action-based temporal planning. In: The 23rd International Symposium on Temporal Representation and Reasoning (TIME). IEEE (2016)Google Scholar
  16. 16.
    Umbrico, A., Orlandini, A., Mayer, M.C.: Enriching a temporal planner with resources and a hierarchy-based heuristic. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 410–423. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24309-2_31 CrossRefGoogle Scholar
  17. 17.
    Carpanzano, E., Cesta, A., Orlandini, A., Rasconi, R., Suriano, M., Umbrico, A., Valente, A.: Design and implementation of a distributed part routing algorithm for reconfigurable transportation systems. Int. J. Comput. Integr. Manuf. (2015) http://www.tandfonline.com/doi/full/10.1080/0951192X.2015.1067911
  18. 18.
    Borgo, S., Cesta, A., Orlandini, A., Rasconi, R., Suriano, M., Umbrico, A.: Towards a cooperative knowledge-based control architecture for a reconfigurable manufacturing plant. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE (2014)Google Scholar
  19. 19.
    Cesta, A., Orlandini, A., Bernardi, G., Umbrico, A.: Towards a planning-based framework for symbiotic human-robot collaboration. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE (2016)Google Scholar
  20. 20.
    Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 494–502 (2001)Google Scholar
  21. 21.
    Fratini, S., Pecora, F., Cesta, A.: Unifying planning and scheduling as timelines in a component-based perspective. Arch. Control Sci. 18(2), 231–271 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: MrSPOCK: steps in developing an end-to-end space application. Comput. Intell. 27(1), 83–102 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Frank, J., Jonsson, A.: Constraint based attribute and interval planning. J. Constraints 8(4), 339–364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Bernardini, S.: Constraint-based temporal planning: issues in domain modelling and search control. PhD thesis, Università degli Studi di Trento (2008)Google Scholar
  25. 25.
    Bernardini, S., Smith, D.E.: Towards search control via dependency graphs in Europa2. In: ICAPS Workshop on Heuristics for Domain Independent Planning (HDIP) (2009)Google Scholar
  26. 26.
    Bresina, J.L., Jónsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the mars exploration rovers. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 40–49 (2005)Google Scholar
  27. 27.
    Fratini, S., Cesta, A., De Benidictis, R., Orlandini, A., Rasconi, R.: APSI-based deliberation in Goal Oriented Autonomous Controllers. In: 11th Symposium on Advanced Space Technologies in Robotics and Automation. ASTRA-11 (2011)Google Scholar
  28. 28.
    Stock, S., Mansouri, M., Pecora, F., Hertzberg, J.: Online task merging with a hierarchical hybrid task planner for mobile service robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6459–6464, September 2015Google Scholar
  29. 29.
    Dvorák, F., Barták, R., Bit-Monnot, A., Ingrand, F., Ghallab, M.: Planning and acting with temporal and hierarchical decomposition models. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 115–121, November 2014Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Alessandro Umbrico
    • 1
  • Amedeo Cesta
    • 2
  • Marta Cialdea Mayer
    • 1
  • Andrea Orlandini
    • 2
  1. 1.Dipartimento di IngegneriaUniversità degli Studi Roma TRERomeItaly
  2. 2.Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie della CognizioneRomeItaly

Personalised recommendations