Advertisement

A Resource-Driven Approach for Anchoring Linguistic Resources to Conceptual Spaces

  • Antonio Lieto
  • Enrico Mensa
  • Daniele P. RadicioniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

In this paper we introduce the ttcs system, so named after Terms To Conceptual Spaces, that exploits a resource-driven approach relying on BabelNet, NASARI and ConceptNet. ttcs takes in input a term and its context of usage and produces as output a specific type of vector-based semantic representation, where conceptual information is encoded through the Conceptual Spaces (a geometric framework for common-sense knowledge representation and reasoning). The system has been evaluated in a twofold experimentation. In the first case we assessed the quality of the extracted common-sense conceptual information with respect to human judgments with an online questionnaire. In the second one we compared the performances of a conceptual categorization system that was run twice, once fed with extracted annotations and once with hand-crafted annotations. In both cases the results are encouraging and provide precious insights to make substantial improvements.

Keywords

NLP Lexical semantics Lexical resources integration 

References

  1. 1.
    Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Camacho-Collados, J., Pilehvar, M.T., Navigli, R.: NASARI: a novel approach to a semantically-aware representation of items. In: Proceedings of NAACL, pp. 567–577 (2015)Google Scholar
  3. 3.
    Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5. In: LREC, pp. 3679–3686 (2012)Google Scholar
  4. 4.
    Hernández-Conde, J.V.: A case against convexity in conceptual spaces. Synthese, 1–27 (2016)Google Scholar
  5. 5.
    Gärdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT Press, Cambridge (2014)zbMATHGoogle Scholar
  6. 6.
    Rosch, E.: Cognitive representations of semantic categories. J. Exp. Psychol. Gen. 104, 192–233 (1975)CrossRefGoogle Scholar
  7. 7.
    Lenat, D.B., Prakash, M., Shepherd, M.: CYC: using common sense knowledge to overcome brittleness and knowledge acquisition bottlenecks. AI Mag. 6, 65 (1985)Google Scholar
  8. 8.
    Frixione, M., Lieto, A.: Representing concepts in formal ontologies: compositionality vs. typicality effects. Logic Logical Philos. 21, 391–414 (2012)MathSciNetGoogle Scholar
  9. 9.
    Reeve, L., Han, H.: Survey of semantic annotation platforms. In: Proceedings of the 2005 ACM symposium on Applied computing, pp. 1634–1638. ACM (2005)Google Scholar
  10. 10.
    Derrac, J., Schockaert, S.: Inducing semantic relations from conceptual spaces: a data-driven approach to plausible reasoning. Artif. Intell. 228, 66–94 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP 14, 1532–1543 (2014)Google Scholar
  12. 12.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  13. 13.
    Turney, P.D., Pantel, P., et al.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37(1), 141–188 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley framenet project. In: Proceedings of the 17th International Conference on Computational Linguistics. Association for Computational Linguistics, vol. 1, pp. 86–90 (1998)Google Scholar
  16. 16.
    Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. University of Chicago Press, Chicago (1993)Google Scholar
  17. 17.
    Havasi, C., Speer, R., Alonso, J.: ConceptNet: a lexical resource for common sense knowledge. Recent Adv. Nat. Lang. Process. V Sel. Pap. RANLP 309, 269 (2007)CrossRefGoogle Scholar
  18. 18.
    Eckle-Kohler, J., Gurevych, I., Hartmann, S., Matuschek, M., Meyer, C.M.: UBY-LMF-a uniform model for standardizing heterogeneous lexical-semantic resources in ISO-LMF. In: LREC, pp. 275–282 (2012)Google Scholar
  19. 19.
    Gurevych, I., Eckle-Kohler, J., Hartmann, S., Matuschek, M., Meyer, C.M., Wirth, C.: UBY: a large-scale unified lexical-semantic resource based on LMF. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, pp. 580–590 (2012)Google Scholar
  20. 20.
    McCrae, J., Montiel-Ponsoda, E., Cimiano, P.: Integrating WordNet and Wiktionary with lemon. In: Chiarcos, C., Nordhoff, S., Hellmann, S. (eds.) Linked Data in Linguistics, pp. 25–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Buitelaar, P., Cimiano, P., Haase, P., Sintek, M.: Towards linguistically grounded ontologies. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 111–125. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02121-3_12 CrossRefGoogle Scholar
  22. 22.
    Tonelli, S., Pianta, E.: A novel approach to mapping framenet lexical units to Wordnet synsets. In: Proceedings of the Eighth International Conference on Computational Semantics. Association for Computational Linguistics, pp. 342–345 (2009)Google Scholar
  23. 23.
    Ferrández, O., Ellsworth, M., Munoz, R., Baker, C.F.: Aligning FrameNet and WordNet based on semantic neighborhoods. LREC 10, 310–314 (2010)Google Scholar
  24. 24.
    Pilehvar, M.T., Jurgens, D., Navigli, R.: Align, disambiguate and walk: a unified approach for measuring semantic similarity. In: ACL, vol. 1, pp. 1341–1351 (2013)Google Scholar
  25. 25.
    Bejan, A., Marden, J.H.: Constructing animal locomotion from new thermadynamics theory. Am. Sci. 94, 342–349 (2006)CrossRefGoogle Scholar
  26. 26.
    Tonelli, S., Pighin, D.: New features for framenet: Wordnet mapping. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning. Association for Computational Linguistics, pp. 219–227 (2009)Google Scholar
  27. 27.
    De Cao, D., Croce, D., Basili, R.: Extensive evaluation of a framenet-wordnet mapping resource. In: LREC (2010)Google Scholar
  28. 28.
    Lieto, A., Minieri, A., Piana, A., Radicioni, D.P.: A knowledge-based system for prototypical reasoning. Connection Sci. 27, 137–152 (2015)CrossRefGoogle Scholar
  29. 29.
    Lieto, A., Radicioni, D.P., Rho, V.: A common-sense conceptual categorization system integrating heterogeneous proxytypes and the dual process of reasoning. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 875–881. AAAI Press, Buenos Aires (2015)Google Scholar
  30. 30.
    Lieto, A., Radicioni, D.P., Rho, V.: Dual PECCS: a cognitive system for conceptual representation and categorization. J. Exp. Theor. Artif. Intell., 1–20 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonio Lieto
    • 1
  • Enrico Mensa
    • 1
  • Daniele P. Radicioni
    • 1
    Email author
  1. 1.Dipartimento di InformaticaUniversità degli Studi di TorinoTurinItaly

Personalised recommendations