Probabilistic Hybrid Knowledge Bases Under the Distribution Semantics

  • Marco AlbertiEmail author
  • Evelina Lamma
  • Fabrizio Riguzzi
  • Riccardo Zese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)


Since Logic Programming (LP) and Description Logics (DLs) are based on different assumptions (the closed and the open world assumption, respectively), combining them provides higher expressiveness in applications that require both assumptions.

Several proposals have been made to combine LP and DLs. An especially successful line of research is the one based on Lifschitz’s logic of Minimal Knowledge with Negation as Failure (MKNF). Motik and Rosati introduced Hybrid knowledge bases (KBs), composed of LP rules and DL axioms, gave them an MKNF semantics and studied their complexity. Knorr et al. proposed a well-founded semantics for Hybrid KBs where the LP clause heads are non-disjunctive, which keeps querying polynomial (provided the underlying DL is polynomial) even when the LP portion is non-stratified.

In this paper, we propose Probabilistic Hybrid Knowledge Bases (PHKBs), where the atom in the head of LP clauses and each DL axiom is annotated with a probability value. PHKBs are given a distribution semantics by defining a probability distribution over deterministic Hybrid KBs. The probability of a query being true is the sum of the probabilities of the deterministic KBs that entail the query. Both epistemic and statistical probability can be addressed, thanks to the integration of probabilistic LP and DLs.


Hybrid knowledge bases MKNF Distribution semantics 



This work was supported by the “GNCS-INdAM”.


  1. 1.
    Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5), 30:1–30:62 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, IJCAI 1991, vol. 1, pp. 381–386. Morgan Kaufmann Publishers Inc., San Francisco (1991)Google Scholar
  3. 3.
    Alberti, M., Gomes, A.S., Gonçalves, R., Leite, J., Slota, M.: Normative systems represented as hybrid knowledge bases. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp. 330–346. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22359-4_23 CrossRefGoogle Scholar
  4. 4.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) 12th International Conference on Logic Programming, Tokyo, Japan, pp. 715–729. MIT Press, Cambridge (1995)Google Scholar
  5. 5.
    Vennekens, J., Verbaeten, S.: Logic programs with annotated disjunctions. Technical report CW386, KU Leuven (2003)Google Scholar
  6. 6.
    d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87993-0_13 CrossRefGoogle Scholar
  7. 7.
    Ceylan, İ.İ, Peñaloza, R.: Bayesian description logics. In: Bienvenu, M., Ortiz, M., Rosati, R., Simkus, M. (eds.) Informal Proceedings of the 27th International Workshop on Description Logics. CEUR Workshop Proceedings, 17–20 July 2014, Vienna, Austria, vol. 1193, pp. 447–458 (2014). CEUR-WS.orgGoogle Scholar
  8. 8.
    Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in probabilistic datalog+/– ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 77–92. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23580-1_7 CrossRefGoogle Scholar
  9. 9.
    Giugno, R., Lukasiewicz, T.: P-\({\cal{SHOQ}}\)(D): a probabilistic extension of \({\cal{SHOQ}}\)(D) for probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002). doi: 10.1007/3-540-45757-7_8 CrossRefGoogle Scholar
  10. 10.
    Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Intell. 34(1–3), 35–88 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7), 852–883 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic description logic programs for the semantic web. In: Spaccapietra, S. (ed.) Journal on Data Semantics XII. LNCS, vol. 5480, pp. 95–130. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00685-2_4 CrossRefGoogle Scholar
  13. 13.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for probabilistic ontologies. In: 7th International Workshop on Uncertainty Reasoning for the Semantic Web. CEUR Workshop Proceedings, vol. 778, pp. 75–86. Sun SITE Central Europe, Aachen, Germany (2011)Google Scholar
  15. 15.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of Knowledge Representation, Chap. 3, pp. 135–179. Elsevier, Amsterdam (2008)Google Scholar
  17. 17.
    Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom. Reasoning 39(3), 249–276 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Riguzzi, F.: The distribution semantics for normal programs with function symbols. Int. J. Approximate Reasoning 77, 1–19 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27775-0_30 CrossRefGoogle Scholar
  20. 20.
    Motik, B., Rosati, R.: A faithful integration of description logics with logic programming. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 477–482. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  21. 21.
    Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J., Janssens, G., De Raedt, L.: ProBlog technology for inference in a probabilistic first order logic. In: 19th European Conference on Artificial Intelligence, ECAI 2010. Frontiers in Artificial Intelligence and Applications, 16–20 August 2010, Lisbon, Portugal, vol. 215, pp. 719–724. IOS Press (2010)Google Scholar
  22. 22.
    Ceylan, İ.İ., Darwiche, A., den Broeck, G.V.: Open-world probabilistic databases. In: Baral, C., Delgrande, J.P., Wolter, F., (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, 25–29 April 2016, Cape Town, South Africa, pp. 339–348. AAAI Press (2016)Google Scholar
  23. 23.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94, 7–56 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF knowledge bases. ACM Trans. Comput. Logic 14(2), 16:1–16:43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Learning probabilistic description logics. In: Bobillo, F., et al. (eds.) URSW 2011-2013. LNCS, vol. 8816, pp. 63–78. Springer International Publishing, Switzerland (2014). doi: 10.1007/978-3-319-13413-0_4 Google Scholar
  26. 26.
    Zese, R., Bellodi, E., Riguzzi, F., Lamma, E.: Tableau reasoners for probabilistic ontologies exploiting logic programming techniques. In: Bellodi, E., Bonfietti, A. (eds.) Doctoral Consortium (DC) Co-located with the 14th Conference of the Italian Association for Artificial Intelligence (AI*IA 2015). CEUR Workshop Proceedings, vol. 1485, pp. 1–6. Sun SITE Central Europe, Aachen, Germany (2015)Google Scholar
  27. 27.
    Riguzzi, F., Swift, T.: The PITA system: tabling and answer subsumption for reasoning under uncertainty. Theoret. Pract. Log. Prog. 11(4–5), 433–449 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bellodi, E., Lamma, E., Riguzzi, F., Zese, R., Cota, G.: A web system for reasoning with probabilistic OWL. Software: Practice and Experience (2016, to appear)Google Scholar
  29. 29.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic programming on the web. Softw. Pract. Exper. 46, 1381–1396 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Marco Alberti
    • 1
    Email author
  • Evelina Lamma
    • 2
  • Fabrizio Riguzzi
    • 1
  • Riccardo Zese
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversity of FerraraFerraraItaly
  2. 2.Dipartimento di IngegneriaUniversity of FerraraFerraraItaly

Personalised recommendations