Skip to main content

Perpetuities

  • Chapter
  • First Online:

Part of the book series: Probability and Its Applications ((PA))

Abstract

Let \((M_{k},Q_{k})_{k\in \mathbb{N}}\) be independent copies of an \(\mathbb{R}^{2}\)-valued random vector (M, Q) with arbitrary dependence of the components, and let X 0 be a random variable which is independent of \((M_{k},Q_{k})_{k\in \mathbb{N}}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Among other things this implies \(\mathbb{E}\log ^{+}\vert Q\vert = \infty\).

  2. 2.

    Condition (A6) together with the second part of (A1) ensures that \(\#\{k:\theta _{ k}^{(n)} \leq T\} \geq 1\).

  3. 3.

    Although a j, n ’s depend on t we suppress this dependence for the sake of clarity.

  4. 4.

    Condition (2.54) is only used in this part of the proof.

Bibliography

  1. A. Agresti, Bounds on the extinction time distribution of a branching process. Adv. Appl. Probab. 6 (1974), 322–335.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alsmeyer, J. D. Biggins and M. Meiners, The functional equation of the smoothing transform. Ann. Probab. 40 (2012), 2069–2105.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Alsmeyer and P. Dyszewski, Thin tails of fixed points of the nonhomogeneous smoothing transform. Preprint (2015) available at http://arxiv.org/abs/1510.06451

  4. G. Alsmeyer and A. Iksanov, A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks. Electron. J. Probab. 14 (2009), 289–313.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Alsmeyer, A. Iksanov and U. Rösler, On distributional properties of perpetuities. J. Theoret. Probab. 22 (2009), 666–682.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Alsmeyer and M. Meiners, Fixed points of inhomogeneous smoothing transforms. J. Difference Equ. Appl. 18 (2012), 1287–1304.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Alsmeyer and M. Meiners, Fixed points of the smoothing transform: two-sided solutions. Probab. Theory Relat. Fields. 155 (2013), 165–199.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Alsmeyer and U. Rösler, A stochastic fixed point equation related to weighted branching with deterministic weights. Electron. J. Probab. 11 (2005), 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Babillot, Ph. Bougerol and L. Elie, The random difference equation X n = A n X n−1 + B n in the critical case. Ann. Probab. 25 (1997), 478–493.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Bassetti and D. Matthes, Multi-dimensional smoothing transformations: existence, regularity and stability of fixed points. Stoch. Proc. Appl. 124 (2014), 154–198.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Basu and A. Roitershtein, Divergent perpetuities modulated by regime switches. Stoch. Models. 29 (2013), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. D. Behme, Distributional properties of solutions of dV t = V tdU t + dL t with Lévy noise. Adv. Appl. Probab. 43 (2011), 688–711.

    MathSciNet  MATH  Google Scholar 

  13. A. Behme and A. Lindner, On exponential functionals of Lévy processes. J. Theoret. Probab. 28 (2015), 681–720.

    Article  MATH  Google Scholar 

  14. J. Bertoin and I. Kortchemski, Self-similar scaling limits of Markov chains on the positive integers. Ann. Appl. Probab. 26 (2016), 2556–2595.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bertoin, A. Lindner and R. Maller, On continuity properties of the law of integrals of Lévy processes. Séminaire de Probabilités XLI, Lecture Notes in Mathematics 1934 (2008), 137–159.

    Google Scholar 

  16. J. Bertoin and M. Yor, Exponential functionals of Lévy processes. Probab. Surv. 2 (2005), 191–212.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. D. Biggins and A. E. Kyprianou, The smoothing transform: the boundary case. Electron. J. Probab. 10 (2005), 609–631.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Bougerol and N. Picard, Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 (1992), 1714–1730.

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Boxma, O. Kella and D. Perry, On some tractable growth-collapse processes with renewal collapse epochs. J. Appl. Probab. 48A (2011), 217–234.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Brandt, The stochastic equation Y n+1 = A n Y n + B n with stationary coefficients. Adv. Appl. Probab. 18 (1986), 211–220.

    MATH  Google Scholar 

  21. S. Brofferio, How a centred random walk on the affine group goes to infinity. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 371–384.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Brofferio, D. Buraczewski and E. Damek, On the invariant measure of the random difference equation X n = A n X n−1 + B n in the critical case. Ann. Inst. H. Poincaré Probab. Statist. 48 (2012), 377–395.

    Article  MATH  Google Scholar 

  23. D. Buraczewski, On invariant measures of stochastic recursions in a critical case. Ann. Appl. Probab. 17 (2007), 1245–1272.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Buraczewski, E. Damek, S. Mentemeier and M. Mirek, Heavy tailed solutions of multivariate smoothing transforms. Stoch. Proc. Appl. 123 (2013), 1947–1986.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Buraczewski, E. Damek and T. Mikosch, Stochastic models with power-law tails: the equation X = AX + B. Springer, 2016.

    Book  MATH  Google Scholar 

  26. D. Buraczewski, E. Damek and J. Zienkiewic, Precise tail asymptotics of fixed points of the smoothing transform with general weights. Bernoulli. 21 (2015), 489–504.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Buraczewski and A. Iksanov, Functional limit theorems for divergent perpetuities in the contractive case. Electron. Commun. Probab. 20, article 10 (2015), 1–14.

    Google Scholar 

  28. D. Buraczewski and K. Kolesko, Linear stochastic equations in the critical case. J. Difference Equ. Appl. 20 (2014), 188–209.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Caliebe and U. Rösler, Fixed points with finite variance of a smoothing transformation. Stoch. Proc. Appl. 107 (2003), 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. S. Chow and H. Teicher, Probability theory: independence, interchangeability, martingales. Springer, 1988.

    Book  MATH  Google Scholar 

  31. D. Denisov and B. Zwart, On a theorem of Breiman and a class of random difference equations. J. Appl. Probab. 44 (2007), 1031–1046.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Diaconis and D. Freedman, Iterated random functions. SIAM Review. 41 (1999), 45–76.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Donati-Martin, R. Ghomrasni and M. Yor, Affine random equations and the stable \((\frac{1} {2})\) distribution. Studia Scientarium Mathematicarum Hungarica. 36 (2000), 387–405.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Dufresne, On the stochastic equation \(\mathcal{L}(X) = \mathcal{L}(B(X + C))\) and a property of gamma distributions. Bernoulli. 2 (1996), 287–291.

    MathSciNet  MATH  Google Scholar 

  35. D. Dufresne, Algebraic properties of beta and gamma distributions and applications. Adv. Appl. Math. 20 (1998), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Durrett and T. Liggett, Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitstheorie Verw. Geb. 64 (1983), 275–301.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Dyszewski, Iterated random functions and slowly varying tails. Stoch. Proc. Appl. 126 (2016), 392–413.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Embrechts and C. M. Goldie, Perpetuities and random equations. In Asymptotic Statistics: Proceedings of the Fifth Prague Symposium (P. Mandl and M. Hus̆ková, eds.), 75–86. Physica, 1994.

    Google Scholar 

  39. P. Erdős, On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61 (1939), 974–976.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Erdős, On the smoothness properties of Bernoulli convolutions. Amer. J. Math. 62 (1940), 180–186.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Erhardsson, Conditions for convergence of random coefficient A R(1) processes and perpetuities in higher dimensions. Bernoulli. 20 (2014), 990–1005.

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Freund and M. Möhle, On the number of allelic types for samples taken from exchangeable coalescents with mutation. Adv. Appl. Probab. 41 (2009), 1082–1101.

    MathSciNet  MATH  Google Scholar 

  43. P. W. Glynn and W. Whitt, Ordinary CLT and WLLN versions of L = λ W. Math. Oper. Res. 13 (1988), 674–692.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Gnedin, A. Iksanov and A. Marynych, On \(\Lambda \) -coalescents with dust component. J. Appl. Probab. 48 (2011), 1133–1151.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Gnedin, J. Pitman and M. Yor, Asymptotic laws for compositions derived from transformed subordinators. Ann. Probab. 34 (2006), 468–492.

    Article  MathSciNet  MATH  Google Scholar 

  46. C. M. Goldie, Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 (1991), 126–166.

    Article  MathSciNet  MATH  Google Scholar 

  47. C. M. Goldie and R. Grübel, Perpetuities with thin tails. Adv. Appl. Probab. 28 (1996), 463–480.

    Article  MathSciNet  MATH  Google Scholar 

  48. C. M. Goldie and R. A. Maller, Stability of perpetuities. Ann. Probab. 28 (2000), 1195–1218.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations. Ann. Appl. Probab. 4 (1994), 169–183.

    Article  MathSciNet  MATH  Google Scholar 

  50. D. R. Grey and Lu Zhunwei, The fractional linear probability generating function in the random environment branching process. J. Appl. Probab. 31 (1994), 38–47.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. K. Grincevičius, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Probab. Appl. 19 (1974), 163–168.

    Article  Google Scholar 

  52. A. K. Grincevičius, Limit theorems for products of random linear transformations on the line. Lithuanian Math. J. 15 (1975), 568–579.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. K. Grincevičius, One limit distribution for a random walk on the line. Lithuanian Math. J. 15 (1975), 580–589.

    Article  MATH  Google Scholar 

  54. A. K. Grincevičius, Products of random affine transformations. Lithuanian Math. J. 20 (1980), 279–282.

    Article  MathSciNet  MATH  Google Scholar 

  55. A. K. Grincevičius, A random difference equation. Lithuanian Math. J. 21 (1981), 302–306.

    Article  MathSciNet  MATH  Google Scholar 

  56. B. Haas and G. Miermont, Self-similar scaling limits of non-increasing Markov chains. Bernoulli. 17 (2011) 1217–1247.

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Hitczenko, On tails of perpetuities. J. Appl. Probab. 47 (2010), 1191–1194.

    Article  MathSciNet  MATH  Google Scholar 

  58. P. Hitczenko and J. Wesołowski, Perpetuities with thin tails revisited. Ann. Appl. Probab. 19 (2009), 2080–2101. Erratum: Ann. Appl. Probab. 20 (2010), 1177.

    Google Scholar 

  59. P. Hitczenko and J. Wesołowski, Renorming divergent perpetuities. Bernoulli. 17 (2011), 880–894.

    Article  MathSciNet  MATH  Google Scholar 

  60. H. K. Hwang and T. H. Tsai, Quickselect and the Dickman function. Combin. Probab. Comput. 11 (2002), 353–371.

    Article  MathSciNet  MATH  Google Scholar 

  61. O. M. Iksanov, On positive distributions of the class L of self-decomposable laws. Theor. Probab. Math. Statist. 64 (2002), 51–61.

    Google Scholar 

  62. A. M. Iksanov, Elementary fixed points of the BRW smoothing transforms with infinite number of summands. Stoch. Proc. Appl. 114 (2004), 27–50.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. M. Iksanov and Z. J. Jurek, On fixed points of Poisson shot noise transforms. Adv. Appl. Probab. 34 (2002), 798–825.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. M. Iksanov and C. S. Kim, On a Pitman-Yor problem. Stat. Probab. Letters. 68 (2004), 61–72.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. M. Iksanov and C. S. Kim, New explicit examples of Poisson shot noise transforms. Austr. New Zealand J. Statist. 46 (2004), 313–321.

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Iksanov and M. Meiners, Fixed points of multivariate smoothing transforms with scalar weights. Alea, Lat. Am. J. Probab. Math. Stat. 12 (2015), 69–114.

    Google Scholar 

  67. A. Iksanov and M. Möhle, On the number of jumps of random walks with a barrier. Adv. Appl. Probab. 40 (2008), 206–228.

    Article  MathSciNet  MATH  Google Scholar 

  68. P. R. Jelenković and M. Olvera-Cravioto, Implicit renewal theorem for trees with general weights. Stoch. Proc. Appl. 122 (2012), 3209–3238.

    Article  MathSciNet  MATH  Google Scholar 

  69. Z. J. Jurek, Selfdecomposability, perpetuity laws and stopping times. Probab. Math Statist. 19 (1999), 413–419.

    MathSciNet  MATH  Google Scholar 

  70. Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables. Z. Wahrscheinlichkeitstheorie Verw. Geb. 62 (1983), 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  71. R. Kalpathy and H. Mahmoud, Perpetuities in fair leader election algorithms. Adv. Appl. Probab. 46 (2014), 203–216.

    Article  MathSciNet  MATH  Google Scholar 

  72. S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Lüroth-type alternating series representations for real numbers. Acta Arith. 55 (1990), 311–322.

    MathSciNet  MATH  Google Scholar 

  73. R. Kapica and J. Morawiec, Refinement equations and distributional fixed points. Appl. Math. Comput. 218 (2012), 7741–7746.

    MathSciNet  MATH  Google Scholar 

  74. H. G. Kellerer, Ergodic behaviour of affine recursions III: positive recurrence and null recurrence. Technical report, Math. Inst. Univ. München, Theresienstrasse 39, D-8000 München, Germany. Available at http://www.mathematik.uni-muenchen.de/~kellerer/

  75. R. Kershner and A. Wintner, On symmetric Bernoulli convolutions. Amer. J. Math. 57 (1935), 541–548.

    Article  MathSciNet  MATH  Google Scholar 

  76. H. Kesten, Random difference equations and renewal theory for products of random matrices. Acta Math. 131 (1973), 207–248.

    Article  MathSciNet  MATH  Google Scholar 

  77. P. Kevei, A note on the Kesten-Grincevičius-Goldie theorem. Electron. Commun. Probab. 21 (2016), paper no. 51, 12 pp.

    Google Scholar 

  78. B. Kołodziejek, Logarithmic tails of sums of products of positive random variables bounded by one. Ann. Appl. Probab., to appear (2017).

    Google Scholar 

  79. G. Letac, A contraction principle for certain Markov chains and its applications. Random matrices and their applications (Brunswick, Maine, 1984), 263–273, Contemp. Math. 50, Amer. Math. Soc., 1986.

    Google Scholar 

  80. Q. Liu, Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. Appl. Probab. 30 (1998), 85–112.

    Article  MathSciNet  MATH  Google Scholar 

  81. H. M. Mahmoud, Distributional analysis of swaps in Quick Select. Theoret. Comput. Sci. 411 (2010), 1763–1769.

    Article  MathSciNet  MATH  Google Scholar 

  82. K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes. Stoch. Proc. Appl. 116 (2006), 156–177.

    Article  MATH  Google Scholar 

  83. M. Meiners and S. Mentemeier, Solutions to complex smoothing equations. Probab. Theory Relat. Fields., to appear (2017).

    Google Scholar 

  84. S. Mentemeier, The fixed points of the multivariate smoothing transform. Probab. Theory Relat. Fields. 164 (2016), 401–458.

    Article  MathSciNet  MATH  Google Scholar 

  85. T. Mikosch, G. Samorodnitsky and L. Tafakori, Fractional moments of solutions to stochastic recurrence equations. J. Appl. Probab. 50 (2013), 969–982.

    Article  MathSciNet  MATH  Google Scholar 

  86. M. Möhle, On the number of segregating sites for populations with large family sizes. Adv. Appl. Probab. 38 (2006), 750–767.

    Article  MathSciNet  MATH  Google Scholar 

  87. P. Negadailov, Limit theorems for random recurrences and renewal-type processes. PhD thesis, University of Utrecht, the Netherlands. Available at http://igitur-archive.library.uu.nl/dissertations/2010-0823-200228/negadailov.pdf

  88. A. G. Pakes, Some properties of a random linear difference equation. Austral. J. Statist. 25 (1983), 345–357.

    Article  MathSciNet  MATH  Google Scholar 

  89. J. C. Pardo, V. Rivero and K. van Schaik, On the density of exponential functionals of Lévy processes. Bernoulli. 19 (2013), 1938–1964.

    Article  MathSciNet  MATH  Google Scholar 

  90. J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions. Canad. J. Math. 55 (2003), 292–330.

    Article  MathSciNet  MATH  Google Scholar 

  91. M. Pratsiovytyi and Yu. Khvorostina, Topological and metric properties of distributions of random variables represented by the alternating Lüroth series with independent elements. Random operators and stochastic equations. 21 (2013), 385–401.

    MathSciNet  MATH  Google Scholar 

  92. W. E. Pruitt, General one-sided laws of the iterated logarithm. Ann. Probab. 9 (1981), 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  93. S. T. Rachev and G. Samorodnitsky, Limit laws for a stochastic process and random recursion arising in probabilistic modelling. Adv. Appl. Probab. 27 (1995), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  94. J. I. Reich, Some results on distributions arising from coin tossing. Ann. Probab. 10 (1982), 780–786.

    Article  MathSciNet  MATH  Google Scholar 

  95. S. I. Resnick, Heavy-tail phenomena. Probabilistic and statistical modeling. Springer, 2007.

    Google Scholar 

  96. S. I. Resnick and E. Willekens, Moving averages with random coefficients and random coefficient autoregressive models. Commun. Statist. Stoch. Models. 7 (1991), 511–525.

    Article  MathSciNet  MATH  Google Scholar 

  97. B. Solomyak, On the random series ±λ i (an Erdös problem). Ann. Math. 242 (1995), 611–625.

    Article  MATH  Google Scholar 

  98. G. Toscani, Wealth redistribution in conservative linear kinetic models. EPL (Europhysics Letters). 88 (2009), 10007.

    Google Scholar 

  99. K. Urbanik, Functionals on transient stochastic processes with independent increments. Studia Math. 103 (1992), 299–315.

    MathSciNet  MATH  Google Scholar 

  100. W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab. 11 (1979), 750–783.

    MathSciNet  MATH  Google Scholar 

  101. T. Watanabe, Absolute continuity of some semi-selfdecomposable distributions and self-similar measures. Probab. Theory Relat. Fields. 117 (2000), 387–405.

    Article  MathSciNet  MATH  Google Scholar 

  102. S. Wild, M. E. Nebel and H. Mahmoud, Analysis of Quickselect under Yaroslavskiy’s dual-pivoting algorithm. Algorithmica. 74 (2016), 485–506.

    Article  MathSciNet  MATH  Google Scholar 

  103. M. Yor, Exponential functionals of Brownian motion and related processes. Springer, 2001.

    Book  MATH  Google Scholar 

  104. A. Zeevi and P. W. Glynn, Recurrence properties of autoregressive processes with super-heavy-tailed innovations. J. Appl. Probab. 41 (2004), 639–653.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Iksanov, A. (2016). Perpetuities. In: Renewal Theory for Perturbed Random Walks and Similar Processes. Probability and Its Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49113-4_2

Download citation

Publish with us

Policies and ethics