Skip to main content

A Discrepancy-Based Framework to Compare Robustness Between Multi-attribute Evaluations

  • Conference paper
  • First Online:
Complex Systems Design & Management (CSDM 2016)

Included in the following conference series:

  • 967 Accesses

Abstract

Multi-objective evaluation is a necessary aspect when managing complex systems, as the intrinsic complexity of a system is generally closely linked to the potential number of optimization objectives. However, an evaluation makes no sense without its robustness being given (in the sense of its reliability). Statistical robustness computation methods are highly dependent of underlying statistical models. We propose a formulation of a model-independent framework in the case of integrated aggregated indicators (multi-attribute evaluation), that allows to define a relative measure of robustness taking into account data structure and indicator values. We implement and apply it to a synthetic case of urban systems based on Paris districts geography, and to real data for evaluation of income segregation for Greater Paris metropolitan area. First numerical results show the potentialities of this new method. Furthermore, its relative independence to system type and model may position it as an alternative to classical statistical robustness methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We design by Multi-Objective Evaluation all practices including the computation of multiple indicators of a system (it can be multi-objective optimization for system design, multi-objective evaluation of an existing system, multi-attribute evaluation; our particular framework corresponds to the last case).

  2. 2.

    The discrepancy is defined as the L2-norm of local discrepancy which is for normalized data points \(\mathbf {X}=(x_{ij})\in \left[ 0,1\right] ^d\), a function of \(\mathbf {t}\in \left[ 0,1\right] ^d\) comparing the number of points falling in the corresponding hypercube with its volume, by \(disc(\mathbf {t}) = \frac{1}{n}\sum _i \mathbbm {1}_{\prod _j x_{ij}<t_j} - \prod _j t_j\). It is a measure of how the point cloud covers the space.

  3. 3.

    at https://github.com/JusteRaimbault/RobustnessDiscrepancy.

  4. 4.

    http://www.insee.fr.

References

  1. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Newman, M.E.J.: Complex systems: a survey (2011). arXiv:1112.1440

  3. Haken, H., Portugali, J.: The face of the city is its information. J. Env. Psychol. 23(4), 385–408 (2003)

    Article  Google Scholar 

  4. Picon, A.: Smart cities: théorie et critique d’un idéal auto-réalisateur. B2 (2013)

    Google Scholar 

  5. Souami, T.: Ecoquartiers: secrets de fabrication. Scrineo (2012)

    Google Scholar 

  6. Bavoux, J.-J., Beaucire, F., Chapelon, L., Zembri, P.: Géographie des transports. Paris (2005)

    Google Scholar 

  7. Carver, J.S.: Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 5(3), 321–339 (1991)

    Article  Google Scholar 

  8. Jégou, A., Augiseau, V., Guyot, C., Judéaux, C., Monaco, F.-X., Pech, P. et al.: L’évaluation par indicateurs: un outil nécessaire d’aménagement urbain durable?. réflexions à partir de la démarche parisienne pour le géographe et l’aménageur. Cybergeo: European Journal of Geography (2012)

    Google Scholar 

  9. Launer, R.L., Wilkinson, G.N.: Robustness in statistics. Academic Press (2014)

    Google Scholar 

  10. Deb, K., Gupta, H.: Introducing robustness in multi-objective optimization. Evol. Comput. 14(4), 463–494 (2006)

    Article  Google Scholar 

  11. Barrico, C., Antunes, C.H.: Robustness analysis in multi-objective optimization using a degree of robustness concept. In: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pp. 1887–1892 (2006)

    Google Scholar 

  12. Brunsdon, C., Fotheringham, S., Charlton, M.: Geographically weighted regression. J. R. Stat. Soc. Ser. D (The Statistician) 47(3), 431–443 (1998)

    Article  MATH  Google Scholar 

  13. Dobbie, M.J., Dail, D.: Robustness and sensitivity of weighting and aggregation in constructing composite indices. Ecol. Indic. 29, 270–277 (2013)

    Article  Google Scholar 

  14. Ali, A., Carneiro, I., Dussarps, L., Guédel, F., Lamy, E., Raimbault, J., Viger, L., Cohen, V., Aw, T., Sadeghian, S.: Les eco-quartiers lus par la mobilité : vers une évaluation intégrée. Technical report, Ecole des Ponts ParisTech (2014). June

    Google Scholar 

  15. Mangin, D., Panerai, P.: Projet urbain. Parenthèses (1999)

    Google Scholar 

  16. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi–Monte Carlo Integration. Cambridge University Press (2010)

    Google Scholar 

  17. Livet, P., Muller, J.-P., Phan, D., Sanders, L.: Ontology, a mediator for agent-based modeling in social science. J. Artif. Soc. Soc. Simul. 13(1), 3 (2010)

    Google Scholar 

  18. Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., Zhao, J.-H.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 13(9), 2263–2278 (2009)

    Article  Google Scholar 

  19. Varet, S.: Développement de méthodes statistiques pour la prédiction d’un gabarit de signature infrarouge. Ph.D. thesis, Université Paul Sabatier-Toulouse III (2010)

    Google Scholar 

  20. Niederreiter, H.: Discrepancy and convex programming. Annali di matematica pura ed applicata 93(1), 89–97 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. DT QGis. Quantum gis geographic information system. Open Source Geospatial Foundation Project (2011)

    Google Scholar 

  22. R Core Team: R language definition (2000)

    Google Scholar 

  23. Jessica, F., Delphine, D., Olivier, R., Astrid, J.: Dicedesign-package. Designs of Computer Experiments, pp. 2 (2009)

    Google Scholar 

  24. Ram, K.: Git can facilitate greater reproducibility and increased transparency in science. Source Code Biol. Med. 8(1), 7 (2013)

    Article  Google Scholar 

  25. Bennett, J.: OpenStreetMap. Packt Publishing Ltd. (2010)

    Google Scholar 

  26. Louf, R., Barthelemy, M.: Patterns of residential segregation (2015). arXiv:1511.04268

  27. Gilli, F., Offner, J.-M.: Paris, métropole hors les murs: aménager et gouverner un Grand Paris. Sciences Po, les presses (2009)

    Google Scholar 

  28. Guérois, M., Le Goix, R.: La dynamique spatio-temporelle des prix immobiliers à différentes échelles: le cas des appartements anciens à paris (1990–2003). Cybergeo: European Journal of Geography (2009)

    Google Scholar 

  29. Tivadar, M., Schaeffer, Y., Torre, A., Bray, F.: Oasis–un outil d’analyse de la ségrégation et des inégalités spatiales. Cybergeo: European Journal of Geography (2014)

    Google Scholar 

  30. Kwan, M.-P.: Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geogr. Anal. 30(3), 191–216 (1998)

    Article  Google Scholar 

  31. Banos, A.: Pour des pratiques de modélisation et de simulation libérées en géographie et shs. Thèse d’Habilitation à Diriger des Recherches, UMR CNRS 8504 Géographie-Cités, ISCPIF, Décembre (2013)

    Google Scholar 

  32. Dragomir, S.S.: The ostrowski’s integral inequality for lipschitzian mappings and applications. Comput. Math. Appl. 38(11), 33–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Julien Keutchayan (Ecole Polytechnique de Montréal) for suggesting the original idea of using discrepancy, and anonymous reviewers for the useful comments and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juste Raimbault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Raimbault, J. (2017). A Discrepancy-Based Framework to Compare Robustness Between Multi-attribute Evaluations. In: Fanmuy, G., Goubault, E., Krob, D., Stephan, F. (eds) Complex Systems Design & Management. CSDM 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-49103-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49103-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49102-8

  • Online ISBN: 978-3-319-49103-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics