Advertisement

Signal Processing Robotics Using Signals Generated by a Human Head: From Pioneering Works to EEG-Based Emulation of Digital Circuits

  • Stevo BozinovskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 540)

Abstract

This plenary keynote paper describes some pioneering steps in robot evolution, regarding human-robot communication using signals generated by a human head: speech, EEG, and EOG signals. The work was done in 1980’s Yugoslavia. Some of the experiments were significantly ahead of time: the 1988 robot control with human EEG was the only such experiment carried out in the 20th century; in the 21st century this research area is increasingly popular. The paper also presents a current research in a new direction in signal processing robotics, the EEG emulation of digital circuits for robot control.

Keywords

Robot evolution Signal processing Speech processing for robot control EEG controlled robots – EOG controlled robots  EEG emulated digital circuits for robot control 

Notes

Acknowledgement

The work described here was funded in part by Macedonian Association for Scientific Activities under the grant Nr 090110384 for the period 1984–1987 and from the Macedonian Ministry of Science under grant Nr 08-778 for the period 1989–1992. Part of this work was funded by United States NSF grant Nr 0447660 ext 2005-701 for the period 2005–2008.

References

  1. 1.
    Vukobratović, M.: Belgrade school of robotics. Facta Universitates 2(10), 1349–1376 (2000)zbMATHGoogle Scholar
  2. 2.
    Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. In: Proceedings of IFAC Symposium on Technical and Biological Problem of Control, Erevan, USSR (1968)Google Scholar
  3. 3.
    Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Bio-Med. Eng. 16(1), 1–6 (1969)CrossRefGoogle Scholar
  4. 4.
    Vukobratovic, M., Stepanenko, Y.: On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972)CrossRefzbMATHGoogle Scholar
  5. 5.
    Vukobratovic, M., Stepanenko, Y.: Mathematical models of general anthropomorphic systems. Math. Biosci. 17, 191–242 (1973)CrossRefzbMATHGoogle Scholar
  6. 6.
    Vukobratovic, M.: How to control the artificial anthropomorphic systems. IEEE Trans. Syst. Man Cybern. SMC-3, 497–507 (1973)CrossRefzbMATHGoogle Scholar
  7. 7.
    Vukobratovic., M., Hristic, D.: Locomotive robots and anthropomorphic mechanisms: realization of artificial walk (in Serbian). Institute Mihajlo Pupin, Belgrade, Yugoslavia (1975)Google Scholar
  8. 8.
    Vukobratovic, M., Borovac, B.: Zero-moment point - thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)CrossRefGoogle Scholar
  9. 9.
    Bozinovski, S., Sestakov, M.: Multitasking operating systems and application in robot control (in Macedonian). In: Proceedings of Symposium on the Informatics in Macedonia, State Association for Scientific Work, Skopje, Yugoslavia, pp. 195–199 (1983)Google Scholar
  10. 10.
    Bozinovski, S., Koco, I., Hristofi, A.: A model of a multirobot supervising control system in a flexible manufacturing system (in Macedonian). In: Proceedings of Symposium on JUROB, Opatija, Yugoslavia (1985)Google Scholar
  11. 11.
    Bozinovski, S.: Flexible manufacturing systems: a biocybernetics approach. In: Popov, E., Vukobratovic, M. (eds.) The 3rd Soviet-Yugoslav Symposium on Robotics and Flexible Manufacturing Systems, Moscow, USSR, pp. 192–197 (1986)Google Scholar
  12. 12.
    Bozinovski, S.: Flexible manufacturing systems: a biocybernetics approach (in Russian). Problemyi Mashinostroeniya i Avtomatizacii 16, 31–34 (1987)Google Scholar
  13. 13.
    Bozinovski, S., Sestakov, M., Stojanov, G.: A learning system for mobile robot control using human head bio signals (in Russian). Problemyi Mashinostroeniya i Avtomatizacii 6, 32–35 (1991)Google Scholar
  14. 14.
    Dudley, H., Riesz, R., Watkins, S.: A synthetic speaker. J. Franklin Inst. 227, 739–764 (1939)CrossRefGoogle Scholar
  15. 15.
    Davis, K., Bidulph, R., Balashek, S.: Automatic recognition of spoken digits. J. Acoust. Soc. Am. 24(6), 637–642 (1952)CrossRefGoogle Scholar
  16. 16.
    Kato, I., Ohteru, S., Kobayashi, H., Shirai, K., Uchiyama, A.: Information-power machine with senses and limbs. In: Proceedings of CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy, pp. 12–24 (1973)Google Scholar
  17. 17.
    Sugano, S., Kato, I.: WABOT-2: autonomous robot with dexterous finger-arm — finger-arm coordination control in keyboard performance. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 90–97 (1987)Google Scholar
  18. 18.
    Grujovski, G., Bozinovski, S.: Realization of a system for speech control of a mobile robot (in Macedonian). In: Proceedings of the 6th Yugoslav Symposium on Applied Robotics and Flexible Automation, Novi Sad, Yugoslavia, pp. 227–235 (1989)Google Scholar
  19. 19.
    Grujovski, G.: Realization of a system for recognition of isolated words and control of a mobile robot with speech commands (in Macedonian). Technical report, Project Adaptive Industrial Robots, based on Grujovski’s Diploma Thesis, mentor S. Bozinovski, Electrical Engineering Faculty, University Cyril and Methodius, Skopje, Yugoslavia (1986)Google Scholar
  20. 20.
    Walter, W.G.: An imitation of life. Sci. Am. 182, 42–45 (1950)CrossRefGoogle Scholar
  21. 21.
    Bozinovski, S., Sestakov, M., Bozinovska, L.: Using EEG alpha rhythm to control a mobile robot. In: Harrism, G., Walker, C. (eds.) Proceedings of 10th Annual Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, vol. 10, pp. 1515–1516, track 17, Biorobotics (1988)Google Scholar
  22. 22.
    Bozinovski, S., Sestakov, M., Stojanov, G., Bozinovska, L.: Bioelectric mobile robot control (in Macedonian). In: Proceedings of 6th Yugoslav Symposium on Applied Robotics and Flexible Automation, Novi Sad, Yugoslavia, pp. 237–242 (1989)Google Scholar
  23. 23.
    Bozinovski, S.: Mobile robot trajectory control: from fixed rails to direct bioelectric control. In: Kaynak, O. (ed.) Proceedings of IEEE International Workshop on Intelligent Motion Control, Istanbul, Turkey, vol. 2, pp. 463–467 (1990)Google Scholar
  24. 24.
    Onosko, T.: Enter the movits; high-tech toys. Creative Comput. 10(12), 119 (1984)Google Scholar
  25. 25.
    Bozinovski, S., Bozinovska, L.: Kinesis of physical objects controlled by signals emanating from a human brain: an engineering and computer science approach, since 1988 (keynote paper). In: Proceedings of Conference IcETRAN, Vrnjacka Banja, Serbia, p. KP 1.5.1-8 (2014)Google Scholar
  26. 26.
    Boden, M.: Grey Walter’s anticipatory tortoises. Rutheford J. 2 (2007)Google Scholar
  27. 27.
    Bozinovski, S., Bozinovski, A.: Mental states, EEG manifestations, and mentally emulated digital circuits for brain-robot interaction. IEEE Trans. Auton. Ment. Dev. 7(1), 39–51 (2015)CrossRefGoogle Scholar
  28. 28.
    Braga, N.: Robotics, Mechatronics, and Artificial Intelligence. Newnes, Boston (2002)Google Scholar
  29. 29.
    Xie, M.: Fundamentals of Robotics. World Scientific, River Edge (2003)CrossRefGoogle Scholar
  30. 30.
    Vidal, J.: Toward direct brain-computer communication. Ann. Rev. Biophys. Bioeng. 2, 157–180 (1973)CrossRefGoogle Scholar
  31. 31.
    Vidal, J.: Real-time detection of brain events in EEG. Proc. IEEE 65, 633–641 (1977)CrossRefGoogle Scholar
  32. 32.
    Farwell, L., Donchin, E.: Talking off the top of your head: a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)CrossRefGoogle Scholar
  33. 33.
    Bozinovska, L., Bozinovski, S., Stojanov, G., Sestakov, M.: Introduction of biofeedback in the CNV paradigm (in Serbian). In: Proceedings of Conference on ETAN, Novi Sad, Yugoslavia, pp. XII. 93–98 (1989)Google Scholar
  34. 34.
    Bozinovska, L., Bozinovski, S., Stojanov, G.: Electroexpectogram: experimental design and algorithms. In: Proceedings of IEEE International Biomedical Engineering Days, Istanbul, Turkey, pp. 58–60 (1992)Google Scholar
  35. 35.
    Walter, G., Cooper, R., Aldridge, V., McCallum, W.: Contingent negative variation: an electric sign of sensory-motor association and expectancy in the human brain. Nature 203, 380–384 (1964)CrossRefGoogle Scholar
  36. 36.
    Bozinovski, A., Tonkovic, S., Isgum, V., Bozinovska, L.: Robot control using anticipatory brain potentials. Automatika 52(1), 20–30 (2011)Google Scholar
  37. 37.
    Bozinovski, S.: Robotics and Intelligent Manufacturing Systems (in Macedonian). Gocmar Press, Skopje (1997). Reviewer M. VukobratovicGoogle Scholar
  38. 38.
    Li, Q., Takanishi, A., Kato, I.: Learning control of compensative trunk motion for biped walking robot based on ZMP stability criterion. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, pp. 597–603 (1992)Google Scholar
  39. 39.
    Matsusaka, Y.: History and current researches on building a human interface for humanoid robots. In: Wachsmuth, I., Knoblich, G. (eds.). LNCS (LNAI), vol. 4930, pp. 109–124. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-79037-2_6 CrossRefGoogle Scholar
  40. 40.
    Rodić, A., Vukobratović, M.: Contribution to the integrated control synthesis of road vehicles. IEEE Trans. Control Syst. Technol. 7(1), 64–78 (1999)CrossRefGoogle Scholar
  41. 41.
    Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. The MIT Press, Cambridge (1986)Google Scholar
  42. 42.
    Bozinovski, S.: Guest Editor’s Introduction: Special Issue on Biological and Non-Biological Beings. Automatika 25, 128 (1985)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.South Carolina State UniversityOrangeburgUSA

Personalised recommendations