Pharmacological and Clinical Treatment of Irritable Bowel Syndrome

  • Maciej SałagaEmail author
  • Paula Mosińska


Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder with an unknown etiology, which is a growing major concern worldwide. Since the pathophysiology of IBS is barely understood there is no specific treatment for this disorder and numerous treatment options aiming at various pharmacological targets located not only in the GI tract, but also in the central nervous system (CNS) are available. In this chapter we provide an overview on drugs that are currently available for IBS therapy with regard to the type of the disease. We discuss their mechanisms of action, evidences for their effectiveness emerging from clinical trials as well as virtues and drawbacks of the most commonly prescribed medications. Furthermore we highlight the practical aspects of the use of certain drugs, such as possible adverse events and contraindications. Moreover we introduce selected complementary and alternative (CAM) medicine methods that have been proven effective in clinical tests.


Irritable bowel syndrome Intestinal transit Visceral pain G protein-coupled receptors Ion channels Hypnosis 

List of abbreviations


µ Opioid receptor


δ Opioid receptor


κ Opioid receptor


Aminopeptidase N


Central nervous system


Chloride ion channels


Cystic fibrosis transmembrane conductance regulator


Chronic constipation


Chronic idiopathic constipation


Constipation-predominant irritable bowel syndrome


Dipeptidyl peptidase IV


Endocannabinoid system


Endogenous opioid system




Guanylate cyclase C

HEK cells

Human embryonic kidney cells

EC cells

Enterochromaffin cells




Serotonin-selective reuptake transporter


Spontaneous complete bowel movement


Tryptophan hydroxylase 1/2


Type 2B serotonin receptor


Type 3 serotonin receptor


Type 4 serotonin receptor



The author is supported by the Medical University of Lodz [502-03/1-156-04/502-14-140 to M Salaga] and the National Science Centre [#UMO-2015/16/T/NZ7/00031 and #UMO-2013/11/N/NZ7/02354 to M Salaga]. This study is also sponsored by the Polpharma Scientific Foundation. The author have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.


The authors have nothing to disclose.


  1. 1.
    Spiller R (2008) Serotonergic agents and the irritable bowel syndrome: what goes wrong? Curr Opin Pharmacol 8:709–714PubMedCrossRefGoogle Scholar
  2. 2.
    Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10:473–486PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Margolis KG, Stevanovic K, Li Z, Yang QM et al (2014) Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 63:928–937PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Coates MD, Mahoney CR, Linden DR, Sampson JE et al (2004) Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126:1657–1664CrossRefGoogle Scholar
  5. 5.
    Jentsch TJ, Gunther W (1997) Chloride channels: an emerging molecular picture. BioEssays 19:117–126PubMedCrossRefGoogle Scholar
  6. 6.
    Jiang C, Xu Q, Wen X, Sun H (2015) Current developments in pharmacological therapeutics for chronic constipation. Acta Pharm Sin B 5:300–309PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lacy BE, Chey WD, Lembo AJ (2015) New and Emerging treatment options for irritable bowel syndrome. Gastroenterol Hepatol (NY) 11:1–19Google Scholar
  8. 8.
    Jarmuz A, Zielinska M, Storr M, Fichna J (2015) Emerging treatments in neurogastroenterology: perspectives of guanylyl cyclase C agonists use in functional gastrointestinal disorders and inflammatory bowel diseases. Neurogastroenterol Motil 27:1057–1068PubMedCrossRefGoogle Scholar
  9. 9.
    Maneerattanaporn M, Chang L, Chey WD (2011) Emerging pharmacological therapies for the irritable bowel syndrome. Gastroenterol Clin North Am 40:223–243PubMedCrossRefGoogle Scholar
  10. 10.
    Birbe R, Palazzo JP, Walters R, Weinberg D et al (2005) Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract. Hum Pathol 36:170–179PubMedCrossRefGoogle Scholar
  11. 11.
    Lima AA, Fonteles MC (2014) From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones. Braz J Med Biol Res 47:179–191PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Steinbrecher KA, Cohen MB (2011) Transmembrane guanylate cyclase in intestinal pathophysiology. Curr Opin Gastroenterol 27:139–145PubMedCrossRefGoogle Scholar
  13. 13.
    Busby RW, Bryant AP, Bartolini WP, Cordero EA et al (2010) Linaclotide, through activation of guanylate cyclase C, acts locally in the gastrointestinal tract to elicit enhanced intestinal secretion and transit. Eur J Pharmacol 649:328–335PubMedCrossRefGoogle Scholar
  14. 14.
    Busby RW, Kessler MM, Bartolini WP, Bryant AP et al (2013) Pharmacologic properties, metabolism, and disposition of linaclotide, a novel therapeutic peptide approved for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. J Pharmacol Exp Ther 344:196–206PubMedCrossRefGoogle Scholar
  15. 15.
    Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79:S23–S45PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Strong TV, Boehm K, Collins FS (1994) Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest 93:347–354PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    de Lisle RC, Meldi L, Roach E, Flynn M et al (2009) Mast cells and gastrointestinal dysmotility in the cystic fibrosis mouse. PLoS ONE 4:e4283PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bodewes FA, Verkade HJ, Taminiau JA, Borowitz D et al (2015) Cystic fibrosis and the role of gastrointestinal outcome measures in the new era of therapeutic CFTR modulation. J Cyst Fibros 14:169–177PubMedCrossRefGoogle Scholar
  19. 19.
    Lynch SV, Goldfarb KC, Wild YK, Kong W et al (2013) Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. Gut Microbes 4:41–47PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Salaga M, Sobczak M, Fichna J (2013) Inhibition of proteases as a novel therapeutic strategy in the treatment of metabolic, inflammatory and functional diseases of the gastrointestinal tract. Drug Discov Today 18:708–715PubMedCrossRefGoogle Scholar
  21. 21.
    Mosinska P, Zielinska M, Fichna J (2016) Expression and physiology of opioid receptors in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 23:3–10PubMedCrossRefGoogle Scholar
  22. 22.
    Sobczak M, Salaga M, Storr MA, Fichna J. (2013) Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J Gastroenterol 49:24–45PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fichna J, Dicay M, Lewellyn K, Janecka A et al (2012) Salvinorin A has antiinflammatory and antinociceptive effects in experimental models of colitis in mice mediated by KOR and CB1 receptors. Inflamm Bowel Dis 18:1137–1145PubMedCrossRefGoogle Scholar
  24. 24.
    Salaga M, Polepally PR, Zakrzewski PK, Cygankiewicz A et al (2014) Novel orally available salvinorin A analog PR-38 protects against experimental colitis and reduces abdominal pain in mice by interaction with opioid and cannabinoid receptors. Biochem Pharmacol 92:618–626PubMedCrossRefGoogle Scholar
  25. 25.
    Salaga M, Polepally PR, Sobczak M, Grzywacz D et al (2014) Novel orally available salvinorin A analog PR-38 inhibits gastrointestinal motility and reduces abdominal pain in mouse models mimicking irritable bowel syndrome. J Pharmacol Exp Ther 350:69–78PubMedCrossRefGoogle Scholar
  26. 26.
    Bokic T, Storr M, Schicho R (2015) Potential causes and present pharmacotherapy of irritable bowel syndrome: an overview. Pharmacology 96:76–85PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chang L, Ameen VZ, Dukes GE, McSorley DJ et al (2005) A dose-ranging, phase II study of the efficacy and safety of alosetron in men with diarrhea-predominant IBS. Am J Gastroenterol 100:115–123PubMedCrossRefGoogle Scholar
  28. 28.
    Krause R, Ameen V, Gordon SH, West M et al (2007) A randomized, double-blind, placebo-controlled study to assess efficacy and safety of 0.5 mg and 1 mg alosetron in women with severe diarrhea-predominant IBS. Am J Gastroenterol 102:1709–1719PubMedCrossRefGoogle Scholar
  29. 29.
    Tong K, Nicandro JP, Shringarpure R, Chuang E et al (2013) A 9-year evaluation of temporal trends in alosetron postmarketing safety under the risk management program. Therap Adv Gastroenterol 6:344–357PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chiba T, Yamamoto K, Sato S, Suzuki K (2013) Long-term efficacy and safety of ramosetron in the treatment of diarrhea-predominant irritable bowel syndrome. Clin Exp Gastroenterol 6:123–128PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Matsueda K, Harasawa S, Hongo M, Hiwatashi N et al (2008) A phase II trial of the novel serotonin type 3 receptor antagonist ramosetron in Japanese male and female patients with diarrhea-predominant irritable bowel syndrome. Digestion 77:225–235PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Matsueda K, Harasawa S, Hongo M, Hiwatashi N et al (2008) A randomized, double-blind, placebo-controlled clinical trial of the effectiveness of the novel serotonin type 3 receptor antagonist ramosetron in both male and female Japanese patients with diarrhea-predominant irritable bowel syndrome. Scand J Gastroenterol 43:1202–1211PubMedCrossRefGoogle Scholar
  33. 33.
    Min YW, Rhee PL (2015) The clinical potential of ramosetron in the treatment of irritable bowel syndrome with diarrhea (IBS-D). Therap Adv Gastroenterol 8:136–142PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nee J, Zakari M, Lembo AJ (2015) Current and emerging drug options in the treatment of diarrhea predominant irritable bowel syndrome. Expert Opin Pharmacother 16:2781–2792PubMedCrossRefGoogle Scholar
  35. 35.
    Lavo B, Stenstam M, Nielsen AL (1987) Loperamide in treatment of irritable bowel syndrome—A double-blind placebo controlled study. Scand J Gastroenterol Suppl 130:77–80PubMedCrossRefGoogle Scholar
  36. 36.
    Karabulut GS, Beser OF, Erginoz E, Kutlu T et al (2013) The incidence of irritable bowel syndrome in children using the Rome III criteria and the effect of trimebutine treatment. J Neurogastroenterol Motil 19:90–93PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Delvaux M, Wingate D (1997) Trimebutine: mechanism of action, effects on gastrointestinal function and clinical results. J Int Med Res 25:225–246PubMedCrossRefGoogle Scholar
  38. 38.
    Fujita W, Gomes I, Dove LS, Prohaska D et al (2014) Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochem Pharmacol 92:448–456PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dove LS, Lembo A, Randall CW, Fogel R et al (2013) Eluxadoline benefits patients with irritable bowel syndrome with diarrhea in a phase 2 study. Gastroenterology 145:329–338PubMedCrossRefGoogle Scholar
  40. 40.
    Lacy BE (2016) Emerging treatments in neurogastroenterology: eluxadoline—A new therapeutic option for diarrhea-predominant IBS. Neurogastroenterol Motil 28:26–35PubMedCrossRefGoogle Scholar
  41. 41.
    Laterza L, Ianiro G, Scoleri I, Landi R et al (2015) Rifaximin for the treatment of diarrhoea-predominant irritable bowel syndrome. Expert Opin Pharmacother 16:607–615PubMedCrossRefGoogle Scholar
  42. 42.
    Soldi S, Vasileiadis S, Uggeri F, Campanale M et al (2015) Modulation of the gut microbiota composition by rifaximin in non-constipated irritable bowel syndrome patients: a molecular approach. Clin Exp Gastroenterol 8:309–325PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kane JS, Ford AC (2016) Rifaximin for the treatment of diarrhea-predominant irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 10:431–442CrossRefGoogle Scholar
  44. 44.
    Pimentel M (2016) Review article: potential mechanisms of action of rifaximin in the management of irritable bowel syndrome with diarrhoea. Aliment Pharmacol Ther 43(Suppl 1):37–49PubMedCrossRefGoogle Scholar
  45. 45.
    Yeo QM, Crutchley R, Cottreau J, Tucker A et al (2013) Crofelemer, a novel antisecretory agent approved for the treatment of HIV-associated diarrhea. Drugs Today (Barc) 49:239–252CrossRefGoogle Scholar
  46. 46.
    Mangel AW, Chaturvedi P (2008) Evaluation of crofelemer in the treatment of diarrhea-predominant irritable bowel syndrome patients. Digestion 78:180–186CrossRefGoogle Scholar
  47. 47.
    Chen CH, Lin CL, Kao CH (2016) Irritable bowel syndrome is associated with an increased risk of dementia: a nationwide population-based study. PLoS ONE 11:e0144589PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fichna J, Storr MA (2012) Brain-Gut Interactions in IBS. Front Pharmacol 3:127PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ford AC, Quigley EM, Lacy BE, Lembo AJ et al (2014) Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol 109:1350–1365PubMedCrossRefGoogle Scholar
  50. 50.
    Vahedi H, Merat S, Momtahen S, Kazzazi AS et al (2008) Clinical trial: the effect of amitriptyline in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 27:678–684PubMedCrossRefGoogle Scholar
  51. 51.
    Awad RA, Camacho S (2010) A randomized, double-blind, placebo-controlled trial of polyethylene glycol effects on fasting and postprandial rectal sensitivity and symptoms in hypersensitive constipation-predominant irritable bowel syndrome. Colorectal Dis 12:1131–1138PubMedCrossRefGoogle Scholar
  52. 52.
    Chapman RW, Stanghellini V, Geraint M, Halphen M (2013) Randomized clinical trial: macrogol/PEG 3350 plus electrolytes for treatment of patients with constipation associated with irritable bowel syndrome. Am J Gastroenterol 108:1508–1515PubMedCrossRefGoogle Scholar
  53. 53.
    Tack J, Camilleri M, Chang L, Chey WD et al (2012) Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders. Aliment Pharmacol Ther 35:745–767PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brandt LJ (2008) The FDA’s decision-making process: isn’t it time to temper the principle of protective paternalism? Am J Gastroenterol 103:1226–1227PubMedCrossRefGoogle Scholar
  55. 55.
    Chey WD, Pare P, Viegas A, Ligozio G et al (2008) Tegaserod for female patients suffering from IBS with mixed bowel habits or constipation: a randomized controlled trial. Am J Gastroenterol 103:1217–1225PubMedCrossRefGoogle Scholar
  56. 56.
    Tougas G, Snape WJ Jr, Otten MH, Earnest DL et al (2002) Long-term safety of tegaserod in patients with constipation-predominant irritable bowel syndrome. Aliment Pharmacol Ther 16:1701–1708PubMedCrossRefGoogle Scholar
  57. 57.
    Camilleri M, Kerstens R, Rykx A, Vandeplassche L (2008) A placebo-controlled trial of prucalopride for severe chronic constipation. N Engl J Med 358:2344–2354PubMedCrossRefGoogle Scholar
  58. 58.
    Quigley EM, Vandeplassche L, Kerstens R, Ausma J (2009) Clinical trial: the efficacy, impact on quality of life, and safety and tolerability of prucalopride in severe chronic constipation—A 12-week, randomized, double-blind, placebo-controlled study. Aliment Pharmacol Ther 29:315–328PubMedCrossRefGoogle Scholar
  59. 59.
    Tack J, van Beyens G, Kerstens R et al (2009) Prucalopride (Resolor) in the treatment of severe chronic constipation in patients dissatisfied with laxatives. Gut 58:357–365PubMedCrossRefGoogle Scholar
  60. 60.
    Mugie SM, Korczowski B, Bodi P, Green A et al (2014) Prucalopride is no more effective than placebo for children with functional constipation. Gastroenterology 147:1285–1295PubMedCrossRefGoogle Scholar
  61. 61.
    Johnston JM, Kurtz CB, Drossman DA, Lembo AJ et al (2009) Pilot study on the effect of linaclotide in patients with chronic constipation. Am J Gastroenterol 104:125–132PubMedCrossRefGoogle Scholar
  62. 62.
    Rao S, Lembo AJ, Shiff SJ, Lavins BJ et al (2012) A 12-week, randomized, controlled trial with a 4-week randomized withdrawal period to evaluate the efficacy and safety of linaclotide in irritable bowel syndrome with constipation. Am J Gastroenterol 107:1714–1724PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chey WD, Lembo AJ, Lavins BJ, Shiff SJ et al (2012) Linaclotide for irritable bowel syndrome with constipation: a 26-week, randomized, double-blind, placebo-controlled trial to evaluate efficacy and safety. Am J Gastroenterol 107:1702–1712PubMedCrossRefGoogle Scholar
  64. 64.
    Yu SW, Rao SS (2014) Advances in the management of constipation-predominant irritable bowel syndrome: the role of linaclotide. Therap Adv Gastroenterol 7:193–205PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wilson N, Schey R (2015) Lubiprostone in constipation: clinical evidence and place in therapy. Ther Adv Chronic Dis 6:40–50PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jakab RL, Collaco AM, Ameen NA (2012) Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig Dis Sci 57:2826–2845PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Johanson JF, Ueno R (2007) Lubiprostone, a locally acting chloride channel activator, in adult patients with chronic constipation: a double-blind, placebo-controlled, dose-ranging study to evaluate efficacy and safety. Aliment Pharmacol Ther 25:1351–1361PubMedCrossRefGoogle Scholar
  68. 68.
    Johanson JF, Morton D, Geenen J, Ueno R (2008) Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of lubiprostone, a locally-acting type-2 chloride channel activator, in patients with chronic constipation. Am J Gastroenterol 103:170–177PubMedCrossRefGoogle Scholar
  69. 69.
    Johanson JF, Drossman DA, Panas R, Wahle A et al (2008) Clinical trial: phase 2 study of lubiprostone for irritable bowel syndrome with constipation. Aliment Pharmacol Ther 27:685–696PubMedCrossRefGoogle Scholar
  70. 70.
    Trinkley KE, Nahata MC (2014) Medication management of irritable bowel syndrome. Digestion 89:253–267PubMedCrossRefGoogle Scholar
  71. 71.
    Mosinska P, Salaga M, Fichna J (2016) Novel investigational drugs for constipation-predominant irritable bowel syndrome: a review. Expert Opin Investig Drugs 25:275–286PubMedCrossRefGoogle Scholar
  72. 72.
    Deiana S, Gabbani T, Bagnoli S, Annese V (2015) Emerging drug for diarrhea predominant irritable bowel syndrome. Expert Opin Emerg Drugs 20:247–261PubMedCrossRefGoogle Scholar
  73. 73.
    Alam MS, Roy PK, Miah AR, Mollick SH et al (2013) Efficacy of Peppermint oil in diarrhea predominant. Mymensingh Med J 22:27–30PubMedGoogle Scholar
  74. 74.
    Khanna R, Macdonald JK, Levesque BG (2014) Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J Clin Gastroenterol 48:505–512PubMedGoogle Scholar
  75. 75.
    Ma XP, Hong J, An CP, Zhang D et al (2014) Acupuncture-moxibustion in treating irritable bowel syndrome: how does it work? World J Gastroenterol 20:6044–6054PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Manheimer E, Wieland LS, Cheng K, Li SM et al (2012) Acupuncture for irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol 107:835–847PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Stuardi T, MacPherson H (2012) Acupuncture for irritable bowel syndrome: diagnosis and treatment of patients in a pragmatic trial. J Altern Complement Med 18:1021–1027PubMedCrossRefGoogle Scholar
  78. 78.
    Miller V, Carruthers HR, Morris J, Hasan SS et al (2015) Hypnotherapy for irritable bowel syndrome: an audit of one thousand adult patients. Aliment Pharmacol Ther 41:844–855PubMedCrossRefGoogle Scholar
  79. 79.
    Palsson OS (2015) Hypnosis treatment of gastrointestinal disorders: A comprehensive review of the empirical evidence. Am J Clin Hypn 58:134–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of BiochemistryMedical University of LodzLodzPoland

Personalised recommendations