An Incremental Learning Method to Support the Annotation of Workflows with Data-to-Data Relations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


Workflow formalisations are often focused on the representation of a process with the primary objective to support execution. However, there are scenarios where what needs to be represented is the effect of the process on the data artefacts involved, for example when reasoning over the corresponding data policies. This can be achieved by annotating the workflow with the semantic relations that occur between these data artefacts. However, manually producing such annotations is difficult and time consuming. In this paper we introduce a method based on recommendations to support users in this task. Our approach is centred on an incremental rule association mining technique that allows to compensate the cold start problem due to the lack of a training set of annotated workflows. We discuss the implementation of a tool relying on this approach and how its application on an existing repository of workflows effectively enable the generation of such annotations.


Association Rules DataNode Port Pair Annotated Items Closed Itemsets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alper, P., Belhajjame, K., Goble, C.A., Karagoz, P.: LabelFlow: exploiting workflow provenance to surface scientific data provenance. In: Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 84–96. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16462-5_7 CrossRefGoogle Scholar
  2. 2.
    Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Bechhofer, S., Garc a Cuesta, E., Soiland-Reyes, S., Verdes-Montenegro, L., et al.: Workflow-centric research objects: first class citizens in scholarly discourse. In: Proceedings of Workshop on the Semantic Publishing (SePublica 2012) 9th Extended Semantic Web Conference Hersonissos, Crete, Greece, 28 May 2012 (2012)Google Scholar
  3. 3.
    Belhajjame, K., Zhao, J., Garijo, D., Garrido, A., Soiland-Reyes, S., Alper, P., Corcho, O.: A workflow prov-corpus based on taverna and wings. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 331–332. ACM (2013)Google Scholar
  4. 4.
    Daga, E., d’Aquin, M., Adamou, A., Motta, E.: Addressing exploitability of smart city data. In: 2016 IEEE Second International Smart Cities Conference (ISC2). IEEE (2016)Google Scholar
  5. 5.
    Daga, E., d’Aquin, M., Gangemi, A., Motta, E.: Describing semantic web applications through relations between data nodes. Technical report kmi-14-05, Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes (2014).
  6. 6.
    Daga, E., d’Aquin, M., Gangemi, A., Motta, E.: Propagation of policies in rich data flows. In: Proceedings of the 8th International Conference on Knowledge Capture, K-CAP 2015, New York, NY, USA, pp. 5:1–5:8 (2015).
  7. 7.
    Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Semantically-aided business process modeling. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 114–129. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Ferreira, D.R., Alves, S., Thom, L.H.: Ontology-based discovery of workflow activity patterns. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 100, pp. 314–325. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28115-0_30 CrossRefGoogle Scholar
  9. 9.
    Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: A pattern-based ontology for describing publishing workflows. In: Proceedings of the 5th International Conference on Ontology and Semantic Web Patterns, WOP 2014, vol. 1302, Aachen, Germany, pp. 2–13. (2014).
  10. 10.
    Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.: Common motifs in scientific workflows: an empirical analysis. Future Gener. Comput. Syst. 36, 338–351 (2014)CrossRefGoogle Scholar
  11. 11.
    Garijo, D., Gil, Y.: A new approach for publishing workflows: abstractions, standards, and linked data. In: Proceedings of the 6th Workshop on Workflows in Support of Large-scale Science, WORKS 2011, NY, USA, pp. 47–56 (2011).
  12. 12.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois (concept) lattices. Comput. Intell. 11(2), 246–267 (1995)CrossRefGoogle Scholar
  13. 13.
    Gómez-Pérez, J.M., Corcho, O.: Problem-solving methods for understanding process executions. Comput. Sci. Eng. 10(3), 47–52 (2008)CrossRefGoogle Scholar
  14. 14.
    Hettne, K., Soiland-Reyes, S., Klyne, G., Belhajjame, K., Gamble, M., Bechhofer, S., Roos, M., Corcho, O.: Workflow forever: Semantic web semantic models and tools for preserving and digitally publishing computational experiments. In: Proceedings of the 4th International Workshop on Semantic Web Applications and Tools for the Life Sciences, SWAT4LS 2011, NY, USA, pp. 36–37 (2012).
  15. 15.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow management. J. Grid Comput. 13(4), 457–493 (2015)CrossRefGoogle Scholar
  17. 17.
    Palma, R., Corcho, O., Hotubowicz, P., Pérez, S., Page, K., Mazurek, C.: Digital libraries for the preservation of research methods and associated artifacts. In: Proceedings of the 1st International Workshop on Digital Preservation of Research Methods and Artefacts, DPRMA 2013, NY, USA, pp. 8–15 (2013).
  18. 18.
    Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal concept analysis in knowledge discovery: a survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS (LNAI), vol. 6208, pp. 139–153. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14197-3_15 CrossRefGoogle Scholar
  19. 19.
    Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Syst. Appl. 40(16), 6601–6623 (2013)CrossRefGoogle Scholar
  20. 20.
    Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In: Proceedings of the 3rd International Workshop on Semantic Business Process Management (SBPM 2008). CEUR-WS Proceedings, vol. 472 (2008)Google Scholar
  21. 21.
    Wille, R.: Formal concept analysis as mathematical theory of concepts and concept hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41, W557–W561 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Knowledge Media Institute (KMI) - The Open UniversityMilton KeynesUK
  2. 2.National Research Council (CNR)CataniaItaly
  3. 3.Paris Nord University, Sorbonne Cite CNRS UMR7030ParisFrance

Personalised recommendations