Extraction and Visualization of TBox Information from SPARQL Endpoints

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

The growing amount of data being published as Linked Data has a huge potential, but the usage of this data is still cumbersome, especially for non-technical users. Visualizations can help to get a better idea of the type and structure of the data available in some SPARQL endpoint, and can provide a useful starting point for querying and analysis. We present an approach for the extraction and visualization of TBox information from Linked Data. SPARQL queries are used to infer concept information from the ABox of a given endpoint, which is then gradually added to an interactive VOWL graph visualization. We implemented the approach in a web application, which was tested on several SPARQL endpoints and evaluated in a qualitative user study with promising results.

Keywords

Linked data Concept extraction Visualization Ontology SPARQL RDF OWL TBox 

References

  1. 1.
    Bostock, M., Ogievetsky, V., Heer, J.: \(\text{ D }^3\) data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  2. 2.
    Camarda, D.V., Mazzini, S., Antonuccio, A.: LodLive, exploring the web of data. In: 8th International Conference on Semantic Systems (I-SEMANTICS 2012), pp. 197–200. ACM (2012)Google Scholar
  3. 3.
    Cortis, K.: ACE: a concept extraction approach using linked open data. In: Concept Extraction Challenge at the Workshop on ‘Making Sense of Microposts’. In: CEUR Workshop Proceedings, vol. 1019, pp. 31–35. CEUR-WS.org (2013)Google Scholar
  4. 4.
    Damljanovic, D., Stankovic, M., Laublet, P.: Linked data-based concept recommendation: comparison of different methods in open innovation scenario. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 24–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: a visual query notation for linked data. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 387–402. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25639-9_51 CrossRefGoogle Scholar
  6. 6.
    Hasan, R., Gandon, F.L.: A machine learning approach to SPARQL query performance prediction. In: WI-IAT (2), pp. 266–273. IEEE Computer Society (2014)Google Scholar
  7. 7.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, San Rafael (2011)Google Scholar
  8. 8.
    Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol. 5887, pp. 182–187. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K.L., Lee, B.S.: Formal concept discovery in semantic web data. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 164–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visualization of ontologies. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti, V., Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKWA 2014 Satellite Events. LNCS, vol. 8982, pp. 154–158. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semant. Web 7(4), 399–419 (2016)CrossRefGoogle Scholar
  12. 12.
    Negru, S., Lohmann, S., Haag, F.: VOWL: visual notation for OWL ontologies (2014). http://purl.org/vowl/
  13. 13.
    Peroni, S., Motta, E., d’Aquin, M.: Identifying key concepts in an ontology, through the integration of cognitive principles with statistical and topological measures. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Presutti, V., Aroyo, L., Adamou, A., Schopman, B.A.C., Gangemi, A., Schreiber, G.: Extracting core knowledge from linked data. In: 2nd International Workshop on Consuming Linked Data (COLD 2011), CEUR Workshop Proceedings, vol. 782. CEUR-WS.org (2011)Google Scholar
  15. 15.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: 1996 IEEE Symposium on Visual Languages (VL 1996), pp. 336–343. IEEE (1996)Google Scholar
  16. 16.
    Stankovic, M., Breitfuss, W., Laublet, P.: Linked-data based suggestion of relevant topics. In: 7th International Conference on Semantic Systems (I-SEMANTICS 2011), pp. 49–55. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute for Visualization and Interactive Systems (VIS)University of StuttgartStuttgartGermany
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)Schloss BirlinghovenSankt AugustinGermany

Personalised recommendations