Abstract
Knowledge graphs encode semantic knowledge that can be exploited to enhance different data-driven tasks, e.g., query answering, data mining, ranking or recommendation. However, knowledge graphs may be incomplete, and relevant relations may be not included in the graph, affecting accuracy of these data-driven tasks. We tackle the problem of relation discovery in a knowledge graph, and devise \(\mathcal {KOI}\), a semantic based approach able to discover relations in portions of knowledge graphs that comprise similar entities. \(\mathcal {KOI}\) exploits both datatype and object properties to compute the similarity among entities, i.e., two entities are similar if their datatype and object properties have similar values. \(\mathcal {KOI}\) implements graph partitioning techniques that exploit similarity values to discover relations from knowledge graph partitions. We conduct an experimental study on a knowledge graph of TED talks with state-of-the-art similarity measures and graph partitioning techniques. Our observed results suggest that \(\mathcal {KOI}\) is able to discover missing edges between related TED talks that cannot be discovered by state-of-the-art approaches. These results reveal that combining semantics encoded both in the similarity measures and in the knowledge graph structure, has a positive impact on the relation discovery problem.
Keywords
- Relation discovery
- Semantic similarity
- Graph partitioning
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
Data collected on 15/2/2015 and 22/04/2016.
- 9.
- 10.
- 11.
- 12.
Google pre-trained dataset: https://goo.gl/flpokK.
- 13.
References
Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 158–204. Springer, Heidelberg (2009)
Epasto, A., Lattanzi, S., Mirrokni, V., Sebe, I.O., Taei, A., Verma, S.: Ego-net community mining applied to friend suggestion. VLDB Endow. 9(4), 324–335 (2015)
Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking. In: EDBT/ICDT 2015 Joint Conference (2015)
Flores, A., Vidal, M., Palma, G.: Exploiting semantics to predict potential novel links from dense subgraphs. In: 9th Alberto Mendelzon International Workshop on Foundations of Data Management (2015)
Fundulaki, I., Auer, S.: Linked open data - introduction to the special theme. ERCIM News 2014(96) (2014)
Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: IJCAI, vol.7 (2007)
García, J.L.R., Sabatino, M., Lisena, P., Troncy, R.: Detecting hot spots in web videos. In: ISWC Poster and Demo Track. CEUR-WS.org (2014)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1) (1998)
Kastrin, A., Rindflesch, T.C., Hristovski, D.: Link prediction on the semantic MEDLINE network - an approach to literature-based discovery. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 135–143. Springer, Heidelberg (2014)
Lausen, G., Meier, M., Schmidt, M.: Sparqling constraints for RDF. In: 11th International Conference on Extending Database Technology, EDBT. ACM (2008)
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR, abs/1405.4053 (2014)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Pereira Nunes, B., Dietze, S., Casanova, M.A., Kawase, R., Fetahu, B., Nejdl, W.: Combining a co-occurrence-based and a semantic measure for entity linking. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 548–562. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8_37
Palma, G., Vidal, M.-E., Raschid, L.: Drug-target interaction prediction using semantic similarity and edge partitioning. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 131–146. Springer, Heidelberg (2014)
Pappas, N., Popescu-Belis, A.: Combining content with user preferences for ted lecture recommendation. In: 11th International Workshop on Content Based Multimedia Indexing. IEEE (2013)
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 30–43 (2009)
Pirró, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25007-6_36
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: LREC 2010 Workshop on New Challenges for NLP Frameworks. ELRA (2010). http://is.muni.cz/publication/884893/en
Rindflesch, T.C., Kilicoglu, H., Fiszman, M., Rosemblat, G., Shin, D.: Semantic medline,: an advanced information management application for biomedicine. Inf. Serv. Use 31(1–2), 15–21 (2011)
Sachan, M., Ichise, R.: Using semantic information to improve link prediction results in network datasets. Int. J. Eng. Technol. 2(4), 71–76 (2010)
Schwartz, J., Steger, A., Weißl, A.: Fast algorithms for weighted bipartite matching. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 476–487. Springer, Heidelberg (2005)
Taibi, D., Chawla, S., Dietze, S., Marenzi, I., Fetahu, B.: Exploring TED talks as linked data for education. Br. J. Educ. Technol. 46(5), 1092–1096 (2015)
Acknowledgements
This work is supported by the German Ministry of Education and Research within the SHODAN project (Ref. 01IS15021C) and the German Ministry of Economy and Technology within the ReApp project (Ref. 01MA13001A).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Traverso-Ribón, I., Palma, G., Flores, A., Vidal, ME. (2016). Considering Semantics on the Discovery of Relations in Knowledge Graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds) Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science(), vol 10024. Springer, Cham. https://doi.org/10.1007/978-3-319-49004-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-49004-5_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49003-8
Online ISBN: 978-3-319-49004-5
eBook Packages: Computer ScienceComputer Science (R0)