Advertisement

Considering Semantics on the Discovery of Relations in Knowledge Graphs

  • Ignacio Traverso-Ribón
  • Guillermo Palma
  • Alejandro Flores
  • Maria-Esther Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

Knowledge graphs encode semantic knowledge that can be exploited to enhance different data-driven tasks, e.g., query answering, data mining, ranking or recommendation. However, knowledge graphs may be incomplete, and relevant relations may be not included in the graph, affecting accuracy of these data-driven tasks. We tackle the problem of relation discovery in a knowledge graph, and devise \(\mathcal {KOI}\), a semantic based approach able to discover relations in portions of knowledge graphs that comprise similar entities. \(\mathcal {KOI}\) exploits both datatype and object properties to compute the similarity among entities, i.e., two entities are similar if their datatype and object properties have similar values. \(\mathcal {KOI}\) implements graph partitioning techniques that exploit similarity values to discover relations from knowledge graph partitions. We conduct an experimental study on a knowledge graph of TED talks with state-of-the-art similarity measures and graph partitioning techniques. Our observed results suggest that \(\mathcal {KOI}\) is able to discover missing edges between related TED talks that cannot be discovered by state-of-the-art approaches. These results reveal that combining semantics encoded both in the similarity measures and in the knowledge graph structure, has a positive impact on the relation discovery problem.

Keywords

Relation discovery Semantic similarity Graph partitioning 

Notes

Acknowledgements

This work is supported by the German Ministry of Education and Research within the SHODAN project (Ref. 01IS15021C) and the German Ministry of Economy and Technology within the ReApp project (Ref. 01MA13001A).

References

  1. 1.
    Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 158–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Epasto, A., Lattanzi, S., Mirrokni, V., Sebe, I.O., Taei, A., Verma, S.: Ego-net community mining applied to friend suggestion. VLDB Endow. 9(4), 324–335 (2015)CrossRefGoogle Scholar
  3. 3.
    Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking. In: EDBT/ICDT 2015 Joint Conference (2015)Google Scholar
  4. 4.
    Flores, A., Vidal, M., Palma, G.: Exploiting semantics to predict potential novel links from dense subgraphs. In: 9th Alberto Mendelzon International Workshop on Foundations of Data Management (2015)Google Scholar
  5. 5.
    Fundulaki, I., Auer, S.: Linked open data - introduction to the special theme. ERCIM News 2014(96) (2014)Google Scholar
  6. 6.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: IJCAI, vol.7 (2007)Google Scholar
  7. 7.
    García, J.L.R., Sabatino, M., Lisena, P., Troncy, R.: Detecting hot spots in web videos. In: ISWC Poster and Demo Track. CEUR-WS.org (2014)Google Scholar
  8. 8.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  9. 9.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1) (1998)Google Scholar
  10. 10.
    Kastrin, A., Rindflesch, T.C., Hristovski, D.: Link prediction on the semantic MEDLINE network - an approach to literature-based discovery. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 135–143. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Lausen, G., Meier, M., Schmidt, M.: Sparqling constraints for RDF. In: 11th International Conference on Extending Database Technology, EDBT. ACM (2008)Google Scholar
  12. 12.
    Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR, abs/1405.4053 (2014)Google Scholar
  13. 13.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  14. 14.
    Pereira Nunes, B., Dietze, S., Casanova, M.A., Kawase, R., Fetahu, B., Nejdl, W.: Combining a co-occurrence-based and a semantic measure for entity linking. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 548–562. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38288-8_37 CrossRefGoogle Scholar
  15. 15.
    Palma, G., Vidal, M.-E., Raschid, L.: Drug-target interaction prediction using semantic similarity and edge partitioning. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 131–146. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Pappas, N., Popescu-Belis, A.: Combining content with user preferences for ted lecture recommendation. In: 11th International Workshop on Content Based Multimedia Indexing. IEEE (2013)Google Scholar
  17. 17.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 30–43 (2009)CrossRefGoogle Scholar
  18. 18.
    Pirró, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25007-6_36 CrossRefGoogle Scholar
  19. 19.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: LREC 2010 Workshop on New Challenges for NLP Frameworks. ELRA (2010). http://is.muni.cz/publication/884893/en
  20. 20.
    Rindflesch, T.C., Kilicoglu, H., Fiszman, M., Rosemblat, G., Shin, D.: Semantic medline,: an advanced information management application for biomedicine. Inf. Serv. Use 31(1–2), 15–21 (2011)Google Scholar
  21. 21.
    Sachan, M., Ichise, R.: Using semantic information to improve link prediction results in network datasets. Int. J. Eng. Technol. 2(4), 71–76 (2010)CrossRefGoogle Scholar
  22. 22.
    Schwartz, J., Steger, A., Weißl, A.: Fast algorithms for weighted bipartite matching. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 476–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Taibi, D., Chawla, S., Dietze, S., Marenzi, I., Fetahu, B.: Exploring TED talks as linked data for education. Br. J. Educ. Technol. 46(5), 1092–1096 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ignacio Traverso-Ribón
    • 1
  • Guillermo Palma
    • 2
  • Alejandro Flores
    • 4
  • Maria-Esther Vidal
    • 2
    • 3
  1. 1.FZI Research Center for Information TechnologyKarlsruheGermany
  2. 2.Universidad Simón BolívarCaracasVenezuela
  3. 3.University of Bonn and FraunhoferBonnGermany
  4. 4.University of MarylandCollege ParkUSA

Personalised recommendations