Selecting Optimal Background Knowledge Sources for the Ontology Matching Task

  • Abdel Nasser Tigrine
  • Zohra Bellahsene
  • Konstantin Todorov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


It is a common practice to rely on background knowledge (BK) in order to assist and improve the ontology matching process. The choice of an appropriate source of background knowledge for a given matching task, however, remains a vastly unexplored question. In the current paper, we propose an automatic BK selection approach that does not depend on an initial direct matching, can handle multilingualism and is domain independent. The approach is based on the construction of an index for a set of BK candidates. The couple of ontologies to be aligned is modeled as a query with respect to the indexed BK sources and the best candidate is selected within an information retrieval paradigm. We evaluate our system in a series of experiments in both general-purpose and domain-specific matching scenarios. The results show that our approach is capable of selecting the BK that provides the best alignment quality with respect to a given reference alignment for each of the considered matching tasks.


Background Knowledge Match Task Cosine Similarity Background Knowledge Source Background Knowledge Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  2. 2.
    Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The agreementmakerlight ontology matching system. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Tigrine, A.N., Bellahsene, Z., Todorov, K.: Light-weight cross-lingual ontology matching with LYAM++. In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.) ODBASE. LNCS, vol. 9415, pp. 527–544. Springer, Cham (2015). doi: 10.1007/978-3-319-26148-5_36 CrossRefGoogle Scholar
  4. 4.
    Sabou, M., d’Aquin, M., Motta, E.: Exploring the semantic web as background knowledge for ontology matching. J. Data Semant. 11, 156–190 (2008)Google Scholar
  5. 5.
    Todorov, K., Hudelot, C., Geibel, P.: Fuzzy and cross-lingual ontology matching mediated by background knowledge. In: Bobillo, F., Carvalho, R.N., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2011-2013. LNCS, vol. 8816, pp. 142–162. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Ngo, D.H., Bellahsene, Z., Todorov, K.: Opening the black box of ontology matching. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 16–30. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38288-8_2 CrossRefGoogle Scholar
  7. 7.
    Conover, W.J.: Practical Nonparametric Statistics. Wiley, Hoboken (1998)Google Scholar
  8. 8.
    Tigrine, A.N., Bellahsene, Z., Todorov, K.: Lyam++ results for OAEI 2015. In: OM at ISWC (2015)Google Scholar
  9. 9.
    Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sérasset, G.: DBnary: wiktionary as a lemon-based multilingual lexical resource in RDF. Semant. Web 6(4), 355–361 (2015)CrossRefGoogle Scholar
  11. 11.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago,: a core of semantic knowledge. In: WWW, pp. 697–706 (2007)Google Scholar
  13. 13.
    Rosse, C., Mejino, J.: A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Inf. 36(6), 478–500 (2003)CrossRefGoogle Scholar
  14. 14.
    Haendel, M., Balhoff, J.P., Bastian, F.B., Blackburn, D.C., Blake, J.A., Bradford, Y., Comte, A., Dahdul, W.M., Dececchi, T., Druzinsky, R.E., Hayamizu, T.F., Ibrahim, N., Lewis, S.E., Mabee, P.M., Niknejad, A., Robinson-Rechavi, M., Sereno, P.C., Mungall, C.J.: Unification of multi-species vertebrate anatomy ontologies for comparative biology in uberon. J. Biomed. Semant. 5, 21 (2014)CrossRefGoogle Scholar
  15. 15.
    Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches. In: VLDB, pp. 610–621 (2002)Google Scholar
  16. 16.
    Groß, A., Hartung, M., Kirsten, T., Rahm, E.: GOMMA results for OAEI 2012. In: Workshop on Ontology Matching (2012)Google Scholar
  17. 17.
    Saha, B., Stanoi, I., Clarkson, K.L.: Schema covering: a step towards enabling reuse in information integration. In: ICDE, pp. 285–296 (2010)Google Scholar
  18. 18.
    Madhavan, J., Bernstein, P.A., Chen, K., Halevy, A.Y., Shenoy, P.: Corpus-based schema matching. In: Proceedings of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), pp. 59–63 (2003)Google Scholar
  19. 19.
    Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching. In: Proceedings of the 21st International Conference on Data Engineering, ICDE, pp. 57–68 (2005)Google Scholar
  20. 20.
    Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching unstructured vocabularies using a background ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS(LNAI), vol. 4248, pp. 182–197. Springer, Heidelberg (2006). doi: 10.1007/11891451_18 CrossRefGoogle Scholar
  21. 21.
    Faria, D., Pesquita, C., Santos, E., Cruz, I., Couto, F.: Automatic background knowledge selection for matching biomedical ontologies. PLoS ONE 9(11), e111226 (2014). doi: 10.1371/journal.pone.0111226 CrossRefGoogle Scholar
  22. 22.
    Quix, C., Roy, P., Kensche, D.: Automatic selection of background knowledge for ontology matching. In: SWIM, p. 5 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Abdel Nasser Tigrine
    • 1
  • Zohra Bellahsene
    • 1
  • Konstantin Todorov
    • 1
  1. 1.LIRMM/University of MontpellierMontpellierFrance

Personalised recommendations