Word Tagging with Foundational Ontology Classes: Extending the WordNet-DOLCE Mapping to Verbs

  • Vivian S. Silva
  • André Freitas
  • Siegfried Handschuh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

Semantic annotation is fundamental to deal with large-scale lexical information, mapping the information to an enumerable set of categories over which rules and algorithms can be applied, and foundational ontology classes can be used as a formal set of categories for such tasks. A previous alignment between WordNet noun synsets and DOLCE provided a starting point for ontology-based annotation, but in NLP tasks verbs are also of substantial importance. This work presents an extension to the WordNet-DOLCE noun mapping, aligning verbs according to their links to nouns denoting perdurants, transferring to the verb the DOLCE class assigned to the noun that best represents that verb’s occurrence. To evaluate the usefulness of this resource, we implemented a foundational ontology-based semantic annotation framework, that assigns a high-level foundational category to each word or phrase in a text, and compared it to a similar annotation tool, obtaining an increase of 9.05 % in accuracy.

Keywords

Linguistic resources Semantic annotation Foundational ontology 

References

  1. 1.
    Ciaramita, M., Altun, Y.: Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 594–602. Association for Computational Linguistics (2006)Google Scholar
  2. 2.
    Ciaramita, M., Johnson, M.: Supersense tagging of unknown nouns in WordNet. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 168–175. Association for Computational Linguistics (2003)Google Scholar
  3. 3.
    Dahlgren, K.: A linguistic ontology. Int. J. Human-Comput. Stud. 43(5), 809–818 (1995)CrossRefGoogle Scholar
  4. 4.
    Daudé, J., Padró, L., Rigau, G.: Making WordNet mapping robust. Procesamiento del Lenguaje Natural 31 (2003)Google Scholar
  5. 5.
    Davidson, D.: The Logical Form of Action Sentences. University of Pittsburgh Press, Pittsburgh (1967)Google Scholar
  6. 6.
    Fellbaum, C.: WordNet. Wiley Online Library, New York (1998)MATHGoogle Scholar
  7. 7.
    Finlayson, M.A.: Java libraries for accessing the Princeton WordNet: comparison and evaluation. In: Proceedings of the 7th Global WordNet Conference, Tartu, Estonia (2014)Google Scholar
  8. 8.
    Gangemi, A.: Norms and plans as unification criteria for social collectives. Auton. Agents Multi-Agent Syst. 17(1), 70–112 (2008)CrossRefGoogle Scholar
  9. 9.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WordNet with DOLCE. AI Magazine 24(3), 13–24 (2003)MATHGoogle Scholar
  10. 10.
    Gangemi, A., Navigli, R., Velardi, P.: The OntoWordNet project: extension and axiomatization of conceptual relations in WordNet. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 820–838. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39964-3_52 CrossRefGoogle Scholar
  11. 11.
    Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 65–81. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_5 CrossRefGoogle Scholar
  12. 12.
    Guarino, N., Welty, C.A.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 201–220. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kuc̆era, H., Francis, W.N., et al.: Computational Analysis of Present-Day American English. Brown University Press, Providence (1967)Google Scholar
  14. 14.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford coreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)Google Scholar
  15. 15.
    Martin, J.H., Jurafsky, D.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. International Edition. Prentice-Hall (2000)Google Scholar
  16. 16.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: The WonderWeb library of foundational ontologies. WonderWeb deliverable 18. Ontology Library (final) (2003)Google Scholar
  17. 17.
    McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in untagged text. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 279. Association for Computational Linguistics (2004)Google Scholar
  18. 18.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  19. 19.
    Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the Workshop on Human Language Technology, pp. 303–308. Association for Computational Linguistics (1993)Google Scholar
  20. 20.
    Moldovan, D.I., Rus, V.: Logic form transformation of WordNet and its applicability to question answering. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, pp. 402–409. Association for Computational Linguistics (2001)Google Scholar
  21. 21.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  22. 22.
    Niles, I., Pease, A.: Linking lexicons and ontologies: mapping WordNet to the suggested upper merged ontology. In: Proceedings of the IEEE International Conference on Information and Knowledge Engineering, pp. 412–416. IEEE (2003)Google Scholar
  23. 23.
    Pasca, M.A., Harabagiu, S.M.: High performance question/answering. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 366–374. ACM (2001)Google Scholar
  24. 24.
    Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28 (2002)Google Scholar
  25. 25.
    Pustejovsky, J., Castano, J., Sauri, R., Rumshinsky, A., Zhang, J., Luo, W.: Medstract: creating large-scale information servers for biomedical libraries. In: Proceedings of the ACL-2002 workshop on Natural language processing in the biomedical domain, vol. 3, pp. 85–92. Association for Computational Linguistics (2002)Google Scholar
  26. 26.
    Vendler, Z.: Linguistics in Philosophy. Cornell University Press, Ithaca (1967)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Vivian S. Silva
    • 1
  • André Freitas
    • 1
  • Siegfried Handschuh
    • 1
  1. 1.Department of Computer Science and MathematicsUniversity of PassauPassauGermany

Personalised recommendations