Integrating New Refinement Operators in Terminological Decision Trees Learning

  • Giuseppe Rizzo
  • Nicola Fanizzi
  • Jens Lehmann
  • Lorenz Bühmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


The problem of predicting the membership w.r.t. a target concept for individuals of Semantic Web knowledge bases can be cast as a concept learning problem, whose goal is to induce intensional definitions describing the available examples. However, the models obtained through the methods borrowed from Inductive Logic Programming e.g. Terminological Decision Trees, may be affected by two crucial aspects: the refinement operators for specializing the concept description to be learned and the heuristics employed for selecting the most promising solution (i.e. the concept description that describes better the examples). In this paper, we started to investigate the effectiveness of Terminological Decision Tree and its evidential version when a refinement operator available in DL-Learner and modified heuristics are employed. The evaluation showed an improvement in terms of the predictiveness.


Description Logic Target Concept Inductive Logic Programming Concept Description Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work fulfills the objectives of the PON 02005633489339 project “Puglia@Service - Internet-based Service Engineering enabling Smart Territory structural development” funded by the Italian Ministry of University and Research (MIUR).


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  2. 2.
    Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web - statistical learning for next generation knowledge bases. Data Min. Knowl. Discov. 24, 613–662 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 442–457. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Towards evidence-based terminological decision trees. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 36–45. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Rizzo, G., d’Amato, C., Fanizzi, N.: On the effectiveness of evidence-based terminological decision trees. In: Esposito, F., Pivert, O., Hacid, M.-S., Rás, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS, vol. 9384, pp. 139–149. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25252-0_15 CrossRefGoogle Scholar
  6. 6.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lehmann, J.: Dl-learner: learning concepts in description logics. J. Mach. Learn. Res. (JMLR) 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. 9, 71–81 (2011)CrossRefGoogle Scholar
  9. 9.
    Lehmann, J., Haase, C.: Ideal downward refinement in the \(\cal{EL}\) description logic. In: Raedt, L. (ed.) ILP 2009. LNCS (LNAI), vol. 5989, pp. 73–87. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13840-9_8 CrossRefGoogle Scholar
  10. 10.
    Klir, J.: Uncertainty and Information. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  11. 11.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78, 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Smarandache, F., Han, D., Martin, A.: Comparative study of contradiction measures in the theory of belief functions. In: 15th International Conference on Information Fusion, FUSION 2012, Singapore, pp. 271–277, 9–12 July 2012Google Scholar
  13. 13.
    Sentz, K., Ferson, S.: Combination of Evidence in Dempster-Shafer Theory, vol. 4015. Citeseer (2002)Google Scholar
  14. 14.
    Dubois, D., Prade, H.: On the combination of evidence in various mathematical frameworks. In: Flamm, J., Luisi, T. (eds.) Reliability Data Collection and Analysis. Eurocourses, vol. 3, pp. 213–241. Springer, Netherlands (1992)CrossRefGoogle Scholar
  15. 15.
    Deng, H., Runger, G.C.: Feature selection via regularized trees. In: The 2012 International Joint Conference on Neural Networks (IJCNN), 2012. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Giuseppe Rizzo
    • 1
  • Nicola Fanizzi
    • 1
  • Jens Lehmann
    • 2
  • Lorenz Bühmann
    • 3
  1. 1.LACAM - Università degli Studi di BariBariItaly
  2. 2.Computer Science InstituteUniversity of BonnBonnGermany
  3. 3.AKSW- Univerität LeipzigLeipzigGermany

Personalised recommendations