Travel Attractions Recommendation with Knowledge Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

Selecting relevant travel attractions for a given user is a real and important problem from both a traveller’s and a travel supplier’s perspectives. Knowledge graphs have been used to conduct recommendations of music artists, movies and books. In this paper, we identify how knowledge graphs might be efficiently leveraged to recommend travel attractions. We improve two main drawbacks in existing systems where semantic information is exploited: semantic poorness and city-agnostic user profiling strategy. Accordingly, we constructed a rich world scale travel knowledge graph from existing large knowledge graphs namely Geonames, DBpedia and Wikidata. The underlying ontology contains more than 1200 classes to describe attractions. We applied a city-dependent user profiling strategy that makes use of the fine semantics encoded in the constructed graph. Our evaluation on YFCC100M dataset showed that our approach achieves a 5.3 % improvement in terms of F1-score, a 4.3 % improvement in terms of nDCG compared with the state-of-the-art approach.

Keywords

e-Tourism Travel attraction Recommender system Semantic information Knowledge graph Ontology 

References

  1. 1.
    Google: Travel trends: 4 mobile moments changing the consumer journey (2015). https://www.thinkwithgoogle.com/articles/travel-trends-4-mobile-moments-changing-consumer-journey.html
  2. 2.
    Expedia: Custom Research: Exploring the Traveler’s Path to Purchase (2014). https://info.advertising.expedia.com/travelerspathtopurchase
  3. 3.
    Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, Jeff, Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17749-1_14 CrossRefGoogle Scholar
  4. 4.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 1–8. ACM, September 2012Google Scholar
  5. 5.
    Ristoski, P., Loza Mencía, E., Paulheim, H.: A hybrid multi-strategy recommender system using linked open data. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 150–156. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_19 Google Scholar
  6. 6.
    Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks a survey. GeoInformatica 19(3), 525–565 (2015)CrossRefGoogle Scholar
  7. 7.
    Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and social influence in location-based social networks. In: Twenty-Sixth AAAI Conference on Artificial Intelligence, July 2012Google Scholar
  8. 8.
    Ye, M., Yin, P., Lee, W. C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 325–334. ACM, July 2011Google Scholar
  9. 9.
    Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-interest recommendation. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 363–372. ACM, July 2013Google Scholar
  10. 10.
    Braunhofer, M., Elahi, M., Ricci, F., Schievenin, T.: Context-aware points of interest suggestion with dynamic weather data management. In: Xiang, Z., Tussyadiah, I. (eds.) Information and communication technologies in tourism 2014, pp. 87–100. Springer International Publishing, Cham (2013)CrossRefGoogle Scholar
  11. 11.
    Noguera, J.M., Barranco, M.J., Segura, R.J., Martínez, L.: A mobile 3D-GIS hybrid recommender system for tourism. Inf. Sci. 215, 37–52 (2012)CrossRefGoogle Scholar
  12. 12.
    Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with topic and location awareness. In: SDM, vol. 13, pp. 396–404, May 2013Google Scholar
  13. 13.
    Brilhante, I.R., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: On planning sightseeing tours with TripBuilder. Inf. Process. Manag. 51(2), 1–15 (2015)CrossRefGoogle Scholar
  14. 14.
    Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 199–208, November 2012. ACMGoogle Scholar
  15. 15.
    Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans. Intell. Transp. Syst. 16(3), 1259–1273 (2015)CrossRefGoogle Scholar
  16. 16.
    Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommendation based on user interests and points of interest visit durations. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015) (2015)Google Scholar
  17. 17.
    Lu, C., Stankovic, M., Laublet, P.: Desperately searching for travel offers? Formulate better queries with some help from linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 621–636. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18818-8_38 CrossRefGoogle Scholar
  18. 18.
    Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)CrossRefGoogle Scholar
  19. 19.
    Di Noia, T., Cantador, I., Ostuni, V.C.: Linked open data-enabled recommender systems: ESWC 2014 challenge on book recommendation. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 129–143. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_17 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.SépageParisFrance
  2. 2.STIH, Université Paris-SorbonneParisFrance

Personalised recommendations