Relating Some Stuff to Other Stuff

  • C. Maria Keet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


Traceability in food and medicine supply chains has to handle stuffs—entities such as milk and starch indicated with mass nouns—and their portions and parts that get separated and put together to make the final product. Implementations have underspecified ‘links’, if at all, and theoretical accounts from philosophy and in domain ontologies are incomplete as regards the relations involved. To solve this issue, we define seven relations for portions and stuff-parts, which are temporal where needed. The resulting theory distinguishes between the extensional and intensional level, and between amount of stuff and quantity. With application trade-offs, this has been implemented as an extension to the Stuff Ontology core ontology that now also imports a special purpose module of the Ontology of units of Measure for quantities. Although atemporal, some automated reasoning for traceability is still possible thanks to using property chains to approximate the relevant temporal aspects.


Automate Reasoning Cardinality Constraint Mass Noun Property Chain Intensional Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems. Ann. Math. Artif. Intell. 50(1–2), 5–38 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artale, A., Guarino, N., Keet, C.M.: Formalising temporal constraints on part-whole relations. In: Proceedings of KR 2008, pp. 673–683. AAAI Press, Sydney, Australia, 16–19 September 2008 (2008)Google Scholar
  3. 3.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: Proceedings of IJCAI 2013 (2013)Google Scholar
  4. 4.
    Barnett, D.: Some stuffs are not sums of stuff. Philos. Rev. 113(1), 89–100 (2004)CrossRefGoogle Scholar
  5. 5.
    Beisswanger, E., Schulz, S., Stenzhorn, H., Hahn, U.: BioTop: an upper domain ontology for the life sciences - a description of its current structure, contents, and interfaces to OBO ontologies. Appl. Ontol. 3(4), 205–212 (2008)Google Scholar
  6. 6.
    Bhattacharjee, P.S., Solanki, M., Bhattacharyya, R., Ehrenberg, I., Sarma, S.: VacSeen: a linked data-based information architecture to track vaccines using barcode scan authentication. In: Proceedings of SWAT4LS 2015, CEUR-WS, vol. 1546, Cambridge, UK, 7–10 December 2015 (2015)Google Scholar
  7. 7.
    Bittner, T., Donnelly, M.: A temporal mereology for distinguishing between integral objects and portions of stuff. In: Proceedings of AAAI 2007, pp. 287–292. Vancouver, Canada (2007)Google Scholar
  8. 8.
    van Brakel, J.: The chemistry of substances and the philosophy of mass terms. Synthese 69, 291–324 (1986)CrossRefGoogle Scholar
  9. 9.
    Donnelly, K.A.-M.: A short communication - meta data and semantics the industry interface: what does the food industry think are necessary elements for exchange? In: Sánchez-Alonso, S., Athanasiadis, I.N. (eds.) MTSR 2010. CCIS, vol. 108, pp. 131–136. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Donnelly, M., Bittner, T.: Summation relations and portions of stuff. Philos. Stud. 143, 167–185 (2009)CrossRefGoogle Scholar
  11. 11.
    Dumontier, M., et al.: The semanticscience integrated ontology (SIO) for biomedical research and knowledge discovery. J. Biomed. Semant. 5(1), 14 (2014)CrossRefGoogle Scholar
  12. 12.
    Gerstl, P., Pribbenow, S.: Midwinters, end games, and body parts: a classification of part-whole relations. Int. J. Hum.-Comput. Stud. 43, 865–889 (1995)CrossRefGoogle Scholar
  13. 13.
    Gruber, T.R., Olsen, G.R.: An ontology for engineering mathematics. In: Doyle, J., Torasso, P., Sandewall, E. (eds.) Proceedings of KR 1994. Morgan Kaufmann (1994)Google Scholar
  14. 14.
    Guizzardi, G.: On the representation of quantities and their parts in conceptual modeling. In: Proceedings of FOIS 2010, IOS Press, Toronto, Canada (2010)Google Scholar
  15. 15.
    Herre, H., Heller, B.: Semantic foundations of medical information systems based on top-level ontologies. Knowl.-Based Syst. 19, 107–115 (2006)CrossRefGoogle Scholar
  16. 16.
    Höfling, B., Liebig, T., Rösner, D., Webel, L.: Towards an ontology for substances and related actions. In: Fensel, D., Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 191–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Keet, C.M.: A core ontology of macroscopic stuff. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 209–224. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations. Appl. Ontol. 3(1–2), 91–110 (2008)Google Scholar
  19. 19.
    Keet, C.M., Khan, M.T., Ghidini, C.: Ontology authoring with FORZA. In: Proceedings of CIKM 2013, pp. 569–578. ACM Proceedings, October 27–November 1, 2013, San Francisco, USA (2013)Google Scholar
  20. 20.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable D18 (ver. 1.0, 31–12-2003) (2003)Google Scholar
  21. 21.
    Milea, V., Frasincar, F., Kaymak, U.: tOWL: a temporal web ontology language. IEEE Trans. Syst. Man Cybern. 42(1), 268–281 (2012)CrossRefGoogle Scholar
  22. 22.
    Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology, modeling and specification language. In: Proceedings of WoMo 2013, CEUR-WS, vol. 1081, Corunna, Spain, 15 September 2013 (2013)Google Scholar
  23. 23.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set. In: Beckert, B. (ed.) Proceedings of VERIFY 2007. CEUR-WS, vol. 259, pp. 119–135, Bremen, Germany, July 15–16, 2007(2007)Google Scholar
  24. 24.
    Needham, P.: Macroscopic mixtures. J. Philos. 104, 26–52 (2007)CrossRefGoogle Scholar
  25. 25.
    Odell, J.: Advanced Object-Oriented Analysis & Design using UML. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  26. 26.
    Rijgersberg, H., van Assem, M., Top, J.: Ontology of units of measure and related concepts. Semant. Web 4(1), 3–13 (2013)Google Scholar
  27. 27.
    Snomed, C.T.: Online (version 31-1-2014).
  28. 28.
    Solanki, M., Brewster, C.: OntoPedigree: modelling pedigrees for traceability in supply chains. Semant. Web J. 7(5), 483–491 (2016)CrossRefGoogle Scholar
  29. 29.
    Varzi, A.C.: Mereology. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. Stanford, fall 2004 edn. (2004).

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Cape TownCape TownSouth Africa

Personalised recommendations