Alligator: A Deductive Approach for the Integration of Industry 4.0 Standards

  • Irlán Grangel-González
  • Diego Collarana
  • Lavdim Halilaj
  • Steffen Lohmann
  • Christoph Lange
  • María-Esther Vidal
  • Sören Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

Industry 4.0 standards, such as AutomationML, are used to specify properties of mechatronic elements in terms of views, such as electrical and mechanical views of a motor engine. These views have to be integrated in order to obtain a complete model of the artifact. Currently, the integration requires user knowledge to manually identify elements in the views that refer to the same element in the integrated model. Existing approaches are not able to scale up to large models where a potentially large number of conflicts may exist across the different views of an element. To overcome this limitation, we developed Alligator, a deductive rule-based system able to identify conflicts between AutomationML documents. We define a Datalog-based representation of the AutomationML input documents, and a set of rules for identifying conflicts. A deductive engine is used to resolve the conflicts, to merge the input documents and produce an integrated AutomationML document. Our empirical evaluation of the quality of Alligator against a benchmark of AutomationML documents suggest that Alligator accurately identifies various types of conflicts between AutomationML documents, and thus helps increasing the scalability, efficiency, and coherence of models for Industry 4.0 manufacturing environments.

Keywords

AutomationML Semantic data integration Industry 4.0 

References

  1. 1.
    Abele, L., Kleinsteuber, M., Hansen, T.: Resource monitoring in industrial production with knowledge-based models and rules. In: PIKM@CIKM, pp. 35–42. ACM (2011)Google Scholar
  2. 2.
    Abele, L., Legat, C., Grimm, S., Muller, A.W.: Ontology-based validation of plant models. In: INDIN, pp. 236–241. IEEE (2013)Google Scholar
  3. 3.
    Barnes, M., Finch, E.L.: COLLADA-Digital Asset Schema Release 1.5.0 specification. Khronos Group, Sony Computer Entertainment Inc (2008)Google Scholar
  4. 4.
    Biffl, S., Kovalenko, O., Lüder, A., Schmidt, N., Rosendahl, R.: Semantic mapping support in AutomationML. In: ETFA, pp. 1–4. IEEE (2014)Google Scholar
  5. 5.
    Björkelund, A., Bruyninckx, H., Malec, J., Nilsson, K., Nugues, P.: Knowledge for intelligent industrial robots. In: AAAI Spring Symposium: Designing Intelligent Robots, vol. SS-12-02. AAAI (2012)Google Scholar
  6. 6.
    Björkelund, A., Malec, J., Nilsson, K., Nugues, P.: Knowledge and skill representations for robotized production. In: Proceedings of the 18th IFAC Congress, Milan (2011)Google Scholar
  7. 7.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)CrossRefGoogle Scholar
  8. 8.
    Fedai, M., Epple, U., Drath, R., Fay, D.: A metamodel for generic data exchange between various CAE systems. In: 4th Mathmod Conference, vol. 24, pp. 1247–1256 (2003)Google Scholar
  9. 9.
    Henßen, R., Schleipen, M.: Interoperability between OPC UA and AutomationML. In: Procedia CIRP 25 8th International Conference on Digital Enterprise Technology DET (2014)Google Scholar
  10. 10.
    Himmler, F.: Function based engineering with automationml - towards better standardization and seamless process integration in plant engineering. In: 12 Int. Tagung Wirtschaftsinformatik, WI (2015)Google Scholar
  11. 11.
    Kovalenko, O., Euzenat, J.: Semantic matching of engineering data structures. In: Bill, S., Sabou, M. (eds.) Semantic Web for Intelligent Engineering Applications, Springer (2016)Google Scholar
  12. 12.
    Kovalenko, O., Wimmer, M., Sabou, M., Lüder, A., Ekaputra, F.J., Biffl, S.: Modeling automationml: semantic web technologies vs. model-driven engineering. In: 20th IEEE Conference on Emerging Technologies and Factory Automation, ETFA, pp. 1–4 (2015)Google Scholar
  13. 13.
    Lange, C.: Krextor - an extensible XML\(\rightarrow \)RDF extraction framework. In: Scripting and Development for the Semantic Web (SFSW), CEUR Workshop Proceedings, Aachen, vol. 449, May 2009Google Scholar
  14. 14.
    Persson, J., Gallois, A., Björkelund, A., Hafdell, L., Haage, M., Malec, J., Nilsson, K., Nugues, P.: A knowledge integration framework for robotics. In: 41st International Symposium on Robotics and ROBOTIK 2010 (2010)Google Scholar
  15. 15.
    Runde, S., Dibowski, H., Fay, A., Kabitzsch, K.: A semantic requirement ontology for the engineering of building automation systems by means of OWL. In: ETFA. IEEE (2009)Google Scholar
  16. 16.
    Sabou, M., Ekaputra, F., Kovalenko, O., Biffl, S.: Supporting the engineering of cyberphysical production systems with the automationml analyzer. In: 2016 1st International Workshop on Cyber-Physical Production Systems (CPPS), pp. 1–8. IEEE (2016)Google Scholar
  17. 17.
    Schleipen, M., Gutting, D., Sauerwein, F.: Domain dependant matching of MES knowledge and domain independent mapping of automationml models. In: 2012 IEEE 17th Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–7. IEEE (2012)Google Scholar
  18. 18.
    Schleipen, M., Okon, M.: The CAEX tool suite - user assistance for the use of standardized plant engineering data exchange. In: 15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA (2010)Google Scholar
  19. 19.
    Schmidt, N., Lüder, A.: AutomationML and eCl@ss integration (2015)Google Scholar
  20. 20.
    Schmidt, N., Lüder, A.: White paper: automation ML in a nutshell. Technical report (2015)Google Scholar
  21. 21.
    Schmidt, N., Lüder, A., Rosendahl, R., Ryashentseva, D., Foehr, M., Vollmar, J.: Surveying integration approaches for relevance in cyber physical production systems. In: ETFA, pp. 1–8. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Irlán Grangel-González
    • 1
    • 2
  • Diego Collarana
    • 1
    • 2
  • Lavdim Halilaj
    • 1
    • 2
  • Steffen Lohmann
    • 2
  • Christoph Lange
    • 1
    • 2
  • María-Esther Vidal
    • 1
    • 2
    • 3
  • Sören Auer
    • 1
    • 2
  1. 1.Enterprise Information Systems (EIS), Computer ScienceUniversity of BonnBonnGermany
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)Sankt AugustinGermany
  3. 3.Universidad Simón BolívarCaracasVenezuela

Personalised recommendations