An Investigation of Definability in Ontology Alignment

  • David Geleta
  • Terry R. Payne
  • Valentina Tamma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


The ability to rewrite defined ontological entities into syntactically different, but semantically equivalent forms is an important property of Definability. While rewriting has been extensively studied, the practical applicability of currently existing methods is limited, as they are bounded to particular Description Logics (DLs), and they often present only theoretical results. Moreover, these efforts focus on computing single definitions, whereas the ability to find the complete set of alternatives, or even just their signature, can support ontology alignment, and semantic interoperability in general. As the number of possible rewritings is potentially exponential in the size of the ontology, we present a novel approach that provides a comprehensive and efficient way to compute in practice all definition signatures of the feasible (given pre-defined complexity bounds) defined entities described using a DL language for which a particular definability property holds (Beth definability). This paper assesses the prevalence, extent and merits of definability over large and diverse corpora, and lays the basis for its use in ontology alignment.


  1. 1.
    Baader, F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Beth, E.W.: On Padoa’s method in the theory of definition. Indag. Math. 15, 330–339 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cheatham, M., Dragisic, Z., Euzenat, J., Faria, D., Ferrara, A., Flouris, G., Fundulaki, I., Granada, R., Ivanova, V., Jiménez-Ruiz, E., Lambrix, P., Montanelli, S., Pesquita, C., Saveta, T., Shvaiko, P., Solimando, A., dos Santos, C.T., Zamazal, O.: Results of the ontology alignment evaluation initiative 2015. In: Proceedings of the 10th International Workshop on Ontology Matching, pp. 60–115 (2015)Google Scholar
  4. 4.
    David, J., Euzenat, J., Šváb-Zamazal, O.: Ontology similarity in the alignment space. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.: Empirical study of logic-based modules: cheap is cheerful. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 84–100. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Donnelly, K.: SNOMED-CT: the advanced terminology and coding system for eHealth. Stud. Health Technol. Inform. 121, 279 (2006)Google Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Geleta, D., Payne, T.R., Tamma, V.: Computing minimal definition signatures in description logic ontologies. Technical report, University of Liverpool (2016).
  9. 9.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)CrossRefzbMATHGoogle Scholar
  10. 10.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  11. 11.
    Hoogland, E., et al.: Definability and interpolation: Model-Theoretic Investigations. Institute for Logic, Language and Computation, Amsterdam (2001)Google Scholar
  12. 12.
    Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University of Manchester (2011)Google Scholar
  13. 13.
    Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. Web 2(1), 11–21 (2011)Google Scholar
  14. 14.
    Matentzoglu, N., Bail, S., Parsia, B.: A snapshot of the OWL web. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 331–346. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Rosse, C., Mejino Jr., J.L.: The foundational model of anatomy ontology. In: Burger, A., Davidson, D., Baldock, R. (eds.) Anatomy Ontologies for Bioinformatics. Computational Biology, vol. 6, pp. 59–117. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I extract? Descr. Log. 477, 78 (2009)Google Scholar
  17. 17.
    Scharffe, F., Zamazal, O., Fensel, D.: Ontology alignment design patterns. Knowl. Inf. Syst. 40(1), 1–28 (2014)CrossRefGoogle Scholar
  18. 18.
    Seylan, I., Franconi, E., De Bruijn, J.: Effective query rewriting with ontologies over DBoxes. In: IJCAI, vol. 9, pp. 923–929. Citeseer (2009)Google Scholar
  19. 19.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant.: Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar
  20. 20.
    Stuckenschmidt, H., Predoiu, L., Meilicke, C.: Learning complex ontology alignments a challenge for ILP research. In: Proceedings of the 18th International Conference on Inductive Logic Programming (2008)Google Scholar
  21. 21.
    Ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description logics. J. Artif. Intell. Res. (JAIR) 48, 347–414 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • David Geleta
    • 1
  • Terry R. Payne
    • 1
  • Valentina Tamma
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations