Semantic Relatedness for All (Languages): A Comparative Analysis of Multilingual Semantic Relatedness Using Machine Translation

  • André Freitas
  • Siamak Barzegar
  • Juliano Efson Sales
  • Siegfried Handschuh
  • Brian Davis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


This paper provides a comparative analysis of the performance of four state-of-the-art distributional semantic models (DSMs) over 11 languages, contrasting the native language-specific models with the use of machine translation over English-based DSMs. The experimental results show that there is a significant improvement (average of 16.7 % for the Spearman correlation) by using state-of-the-art machine translation approaches. The results also show that the benefit of using the most informative corpus outweighs the possible errors introduced by the machine translation. For all languages, the combination of machine translation over the Word2Vec English distributional model provided the best results consistently (average Spearman correlation of0.68).


Multilingual distributional semantics Machine translation 



This publication has emanated from research supported by the National Council for Scientific and Technological Development, Brazil (CNPq) and by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.


  1. 1.
    Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: distributed word representations for multilingual NLP. In: Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pp. 183–192. Association for Computational Linguistics, Sofia, August 2013.
  2. 2.
    Barzegar, S., Sales, J.E., Freitas, A., Handschuh, S., Davis, B.: Dinfra: a one stop shop for computing multilingual semantic relatedness. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2015, 1027–1028. ACM, New York (2015).
  3. 3.
    Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif. Int. Res. 49(1), 1–47 (2014). MathSciNetzbMATHGoogle Scholar
  4. 4.
    Camacho-Collados, J., Pilehvar, M.T., Navigli, R.: A framework for the construction of monolingual and cross-lingual word similarity datasets. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP), pp. 1–7. Citeseer (2015)Google Scholar
  5. 5.
    Faruqui, M., Dyer, C.: Community evaluation and exchange of word vectors at (2014)Google Scholar
  6. 6.
    Faruqui, M., Dyer, C.: Improving vector space word representations using multilingual correlation. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 462–471. Association for Computational Linguistics, Gothenburg, April 2014.
  7. 7.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference on World Wide Web, pp. 406–414. ACM (2001)Google Scholar
  8. 8.
    Freitas, A.: Schema-agnositc queries over large-schema databases: a distributional semantics approach. Ph.D. thesis, Digital Enterprise Research Institute (DERI), National University of Ireland, Galway (2015)Google Scholar
  9. 9.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 1606–1611. Morgan Kaufmann Publishers Inc., San Francisco (2007).
  10. 10.
    Hill, F., Reichart, R., Korhonen, A.: Simlex-999: evaluating semantic models with (genuine) similarity estimation. Comput. Linguist. 41(4), 665–695 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jurgens, D., Stevens, K.: The s-space package: an open source package for word space models. In: Proceedings of the ACL 2010 System Demonstrations, ACLDemos 2010, pp. 30–35. Association for Computational Linguistics, Stroudsburg (2010).
  12. 12.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)CrossRefGoogle Scholar
  13. 13.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR Workshop Papers (2013)Google Scholar
  14. 14.
    Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)CrossRefGoogle Scholar
  15. 15.
    Navigli, R., Ponzetto, S.P.: Babelrelate! A joint multilingual approach to computing semantic relatedness. In: AAAI Conference on Artificial Intelligence (2012)Google Scholar
  16. 16.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), vol. 12, pp. 1532–1543 (2014)Google Scholar
  17. 17.
    Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  18. 18.
    Sales, J.E., Freitas, A., Davis, B., Handschuh, S.: A compositional-distributional semantic model for searching complex entity categories. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics (*SEM), pp. 199–208 (2016)Google Scholar
  19. 19.
    Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Int. Res. 37(1), 141–188 (2010). MathSciNetzbMATHGoogle Scholar
  20. 20.
    Utt, J., Pad, S.: Crosslingual and multilingual construction of syntax-based vector space models. Trans. Assoc. Comput. Linguist. 2, 245–258 (2014)Google Scholar
  21. 21.
    Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings for phrase-based machine translation. In: EMNLP, pp. 1393–1398 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • André Freitas
    • 1
  • Siamak Barzegar
    • 2
  • Juliano Efson Sales
    • 1
  • Siegfried Handschuh
    • 1
  • Brian Davis
    • 2
  1. 1.Department of Computer Science and MathematicsUniversity of PassauPassauGermany
  2. 2.Insight Centre for Data AnalyticsNational University of Ireland, GalwayGalwayIreland

Personalised recommendations