Advertisement

An RDF Design Pattern for the Structural Representation and Querying of Expressions

  • Sébastien Ferré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

Expressions, such as mathematical formulae, logical axioms, or structured queries, account for a large part of human knowledge. It is therefore desirable to allow for their representation and querying with Semantic Web technologies. We propose an RDF design pattern that fulfills three objectives. The first objective is the structural representation of expressions in standard RDF, so that expressive structural search is made possible. We propose simple Turtle and SPARQL abbreviations for the concise notation of such RDF expressions. The second objective is the automated generation of expression labels that are close to usual notations. The third objective is the compatibility with existing practice and legacy data in the Semantic Web (e.g., SPIN, OWL/RDF). We show the benefits for RDF tools to support this design pattern with the extension of SEWELIS, a tool for guided exploration and edition, and its application to mathematical search.

Keywords

Query Language Priority Level SPARQL Query Syntax Tree Wild Card 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altamimi, M.E., Youssef, A.S.: A math query language with an expanded set of wildcards. Math. Comput. Sci. 2(2), 305–331 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the Semantic Web. Int. J. Metadata Semant. Ontol. 7(1), 37–54 (2012)CrossRefGoogle Scholar
  3. 3.
    Guidi, F., Schena, I.: A query language for a metadata framework about mathematical resources. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 105–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC, London (2009)Google Scholar
  5. 5.
    Kohlhase, M., Müller, C., Rabe, F.: Notations for living mathematical documents. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 504–519. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Lange, C.: Ontologies and languages for representing mathematical knowledge on the Semantic Web. Semant. Web 4(2), 119–158 (2013)Google Scholar
  8. 8.
    Mallea, A., Arenas, M., Hogan, A., Polleres, A.: On blank nodes. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 421–437. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  10. 10.
    Marchiori, M.: The mathematical Semantic Web. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 216–224. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    MathML: Mathematical markup language 3.0, W3C Recommendation (2010). http://www.w3.org/TR/MathML3/
  12. 12.
    Miner, R., Munavalli, R.: An approach to mathematical search through query formulation and data normalization. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 342–355. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Rabe, F.: A query language for formal mathematical libraries. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 143–158. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Robbins, A.: Semantic MathML (2009). http://straymindcough.blogspot.fr/2009/06/
  15. 15.
    SPIN - SPARQL syntax, W3C Member Submission (2011). http://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/
  16. 16.
    Youssef, A.M.: Roles of math search in mathematics. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 2–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.IRISA, Université de Rennes 1Rennes CedexFrance

Personalised recommendations