Decoupling Abstractions of Non-linear Ordinary Differential Equations

  • Andrew SogokonEmail author
  • Khalil GhorbalEmail author
  • Taylor T. Johnson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9995)


We investigate decoupling abstractions, by which we seek to simulate (i.e. abstract) a given system of ordinary differential equations (ODEs) by another system that features completely independent (i.e. uncoupled) sub-systems, which can be considered as separate systems in their own right. Beyond a purely mathematical interest as a tool for the qualitative analysis of ODEs, decoupling can be applied to verification problems arising in the fields of control and hybrid systems. Existing verification technology often scales poorly with dimension. Thus, reducing a verification problem to a number of independent verification problems for systems of smaller dimension may enable one to prove properties that are otherwise seen as too difficult. We show an interesting correspondence between Darboux polynomials and decoupling simulating abstractions of systems of polynomial ODEs and give a constructive procedure for automatically computing the latter.


Ordinary differential equations Darboux polynomials Simulation Abstraction Decoupling 



The authors would like to thank the anonymous reviewers for their careful reading and judicious critique and extend their thanks to Dr. André Platzer at Carnegie Mellon University for his technical questions and helpful insights into differential ghosts.


  1. 1.
    Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30885-7_13 CrossRefGoogle Scholar
  2. 2.
    Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: HSCC, pp. 128–133. ACM (2015)Google Scholar
  3. 3.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). doi: 10.1007/3-540-07407-4_17 CrossRefGoogle Scholar
  5. 5.
    Conti, R., Galeotti, M.: Totally bounded cubic systems in \(\mathbb{R}^2\). In: Macki, J.W., Zecca, P. (eds.) Dynamical Systems. LNM, vol. 1822, pp. 103–171. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45204-1_2 CrossRefGoogle Scholar
  6. 6.
    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  7. 7.
    Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_19 CrossRefGoogle Scholar
  8. 8.
    Giannakopoulou, D., Méry, D. (eds.): FM 2012. LNCS, vol. 7436. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  9. 9.
    Ginoux, J.M.: Differential Geometry Applied to Dynamical Systems. World Scientific Series on Nonlinear Science, vol. 66. World Scientific, Singapore (2009)zbMATHGoogle Scholar
  10. 10.
    Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced Series in Nonlinear Dynamics. World Scientific, Singapore (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hale, J.K., LaSalle, J.P.: Differential equations: linearity vs. nonlinearity. SIAM Rev. 5(3), 249–272 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Han, Z., Krogh, B.: Reachability analysis of hybrid control systems using reduced-order models. In: 2004 American Control Conference, Proceedings of the 2004, vol. 2, pp. 1183–1189, June 2004Google Scholar
  14. 14.
    Jeannin, J.-B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki, E., Platzer, A.: A formally verified hybrid system for the next-generation airborne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 21–36. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_2 Google Scholar
  15. 15.
    Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15769-1_23 CrossRefGoogle Scholar
  16. 16.
    Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN), p. 4, September 2006Google Scholar
  17. 17.
    Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reasoning, 1–47 (2016)Google Scholar
  20. 20.
    Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-05089-3_35 CrossRefGoogle Scholar
  21. 21.
    Robinson, J.C.: An Introduction to Ordinary Differential Equations. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sankaranarayanan, S.: Change-of-bases abstractions for non-linear hybrid systems. Nonlinear Anal. Hybrid Syst. 19, 107–133 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods Syst. Des. 32(1), 25–55 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 686–702. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_56 CrossRefGoogle Scholar
  25. 25.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, New York (1994)Google Scholar
  26. 26.
    Tarski, A.: A decision method for elementary algebra and geometry. In: Bulletin of the American Mathematical Society, vol. 59 (1951)Google Scholar
  27. 27.
    Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012)zbMATHGoogle Scholar
  28. 28.
    Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-06410-9_49 CrossRefGoogle Scholar
  29. 29.
    Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese train control system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54108-7_14 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Vanderbilt UniversityNashvilleUSA
  2. 2.InriaRennesFrance
  3. 3.Vanderbilt UniversityNashvilleUSA

Personalised recommendations