NEON-SIDH: Efficient Implementation of Supersingular Isogeny Diffie-Hellman Key Exchange Protocol on ARM

  • Brian Koziel
  • Amir Jalali
  • Reza Azarderakhsh
  • David Jao
  • Mehran Mozaffari-Kermani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10052)

Abstract

We investigate the efficiency of implementing the Jao and De Feo isogeny-based post-quantum key exchange protocol (from PQCrypto 2011) on ARM-powered embedded platforms. In this work we propose new primes to speed up constant-time finite field arithmetic and perform isogenies quickly. Montgomery multiplication and reduction are employed to produce a speedup of 3 over the GNU Multiprecision Library. We analyze the recent projective isogeny formulas presented in Costello et al. (Crypto 2016) and conclude that affine isogeny formulas are much faster in ARM devices. We provide fast affine SIDH libraries over 512, 768, and 1024-bit primes. We provide timing results for emerging embedded ARM platforms using the ARMv7A architecture for the 85-, 128-, and 170-bit quantum security levels. Our assembly-optimized arithmetic cuts the computation time for the protocol by 50 % in comparison to our portable C implementation and performs approximately 3 times faster than the only other ARMv7 results found in the literature. The goal of this paper is to show that isogeny-based cryptosystems can be implemented further and be used as an alternative to classical cryptosystems on embedded devices.

Keywords

Elliptic curve cryptography Post-quantum cryptography Isogeny-based cryptosystems ARM embedded processors Finite-field arithmetic Assembly implementation 

References

  1. 1.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 124–134 (1994)Google Scholar
  2. 2.
    Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_31 CrossRefGoogle Scholar
  3. 3.
    Heyse, S.: Implementation of Mceliece based on quasi-dyadic goppa codes for embedded devices. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 143–162. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5_10 CrossRefGoogle Scholar
  4. 4.
    Heyse, S., Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1_16 CrossRefGoogle Scholar
  5. 5.
    Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5_2 CrossRefGoogle Scholar
  6. 6.
    De Feo, L., Jao, D., Plut, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptology 8(3), 209–247 (2014)MathSciNetMATHGoogle Scholar
  7. 7.
    Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4_21 CrossRefGoogle Scholar
  8. 8.
    Chen, L., Jordan, S.: Report on post-quantum cryptography, NIST IR 8105 (2016)Google Scholar
  9. 9.
    Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM, New York (2016)Google Scholar
  10. 10.
    Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-resistant key-exchange protocol on embedded systems. Technical report, University of Waterloo (2014)Google Scholar
  11. 11.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (1992)Google Scholar
  12. 12.
    Mestre, J.F.: La méthode des graphes. Exemples et applications. In: Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata, 1986), pp. 217–242. Nagoya Univ., Nagoya (1986)Google Scholar
  13. 13.
    Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48, 243–264 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bernstein, D.J., Lange, T.: Explicit-formulas database (2007). http://www.hyperelliptic.org/EFD/
  15. 15.
    Bernstein, D.J.: Differential addition chains. Technical report (2006). http://cr.yp.to/ecdh/diffchain-20060219.pdf
  16. 16.
    Azarderakhsh, R., Karabina, K.: A new double point multiplication algorithm and its application to binary elliptic curves with endomorphisms. IEEE Trans. Comput. 63(10), 2614–2619 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit primes. J. Cryptograph. Eng. 5(2), 141–151 (2014)CrossRefGoogle Scholar
  18. 18.
    Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Seo, H., Liu, Z., Grobschadl, J., Kim, H.: Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation. Cryptology ePrint Archive, Report 2015/465 (2015)Google Scholar
  20. 20.
    Kaliski, B.S.: The montgomery inverse and its applications. IEEE Trans. Comput. 44(8), 1064–1065 (1995)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Brian Koziel
    • 1
  • Amir Jalali
    • 2
  • Reza Azarderakhsh
    • 3
  • David Jao
    • 4
  • Mehran Mozaffari-Kermani
    • 5
  1. 1.Texas InstrumentsWylieUSA
  2. 2.CE DepartmentRITRochesterUSA
  3. 3.CEECS Department and I-SENSE FAUBoca RatonUSA
  4. 4.C&O DepartmentUniversity of WaterlooWaterlooCanada
  5. 5.EME DepartmentRITRochesterUSA

Personalised recommendations