Skip to main content

Integral Privacy

Part of the Lecture Notes in Computer Science book series (LNSC,volume 10052)


When considering data provenance some problems arise from the need to safely handle provenance related functionality. If some modifications have to be performed in a data set due to provenance related requirements, e.g. remove data from a given user or source, this will affect not only the data itself but also all related models and aggregated information obtained from the data. This is specially aggravated when the data are protected using a privacy method (e.g. masking method), since modification in the data and the model can leak information originally protected by the privacy method. To be able to evaluate privacy related problems in data provenance we introduce the notion of integral privacy as compared to the well known definition of differential privacy.


  • Decision Tree
  • Data Privacy
  • Voronoi Tesselation
  • Differential Privacy
  • Disclosure Risk

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48965-0_44
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-48965-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. Barbier, G., Feng, Z., Gundecha, P., Liu, H.: Provenance Data in Social Media. Morgan & Claypool Publishers, San Rafael (2013)

    Google Scholar 

  2. Bertino, E., Ghinita, G., Kantarcioglu, M., Nguyen, D., Park, J., Sandhu, R., Sultana, S., Thuraisingham, B., Xu, S.: A roadmap for privacy-enhanced secure data provenance. J. Intell. Inf. Syst. 43, 481–501 (2014)

    CrossRef  Google Scholar 

  3. Buneman, P., Khanna, S., Wang-Chiew, T.: A characterization of data provenance. In: International Conference on Database Theory, pp. 316–330. Springer

    Google Scholar 

  4. Das, S.: Functional Fractional Calculus. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  5. Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control methods for microdata. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L., (eds.) Confidentiality, Disclosure, Data Access: Theory and Practical Applications for Statistical Agencies, North-Holland, pp. 111–134 (2001)

    Google Scholar 

  6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Hasan, R., Sion, R., Winslett, M.: (2007) Introducing secure provenance: problems and challenges. In: Proceedings StorageSST. ACM, New York (2007)

    Google Scholar 

  8. Muralidhar, K., Sarathy, R.: Generating sufficiency-based non-synthetic perturbed data. Trans. Data Priv. 1(1), 17–33 (2008)

    MathSciNet  Google Scholar 

  9. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM Sigmod Rec. 34(3), 31–36 (2005)

    CrossRef  Google Scholar 

  10. Torra, V., Navarro-Arribas, G.: Data Privacy, WIREs Data Mining and Knowledge Discovery, 4(4), 269–280 (2014)

    Google Scholar 

  11. Winkler, W.E.: Re-identification methods for masked microdata. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 216–230. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

Download references


Partial support by the Spanish MINECO (project TIN2014-55243-P) and Catalan AGAUR (2014-SGR-691) is acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vicenç Torra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Torra, V., Navarro-Arribas, G. (2016). Integral Privacy. In: Foresti, S., Persiano, G. (eds) Cryptology and Network Security. CANS 2016. Lecture Notes in Computer Science(), vol 10052. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48964-3

  • Online ISBN: 978-3-319-48965-0

  • eBook Packages: Computer ScienceComputer Science (R0)