An MPC-Based Privacy-Preserving Protocol for a Local Electricity Trading Market

  • Aysajan Abidin
  • Abdelrahaman AlyEmail author
  • Sara Cleemput
  • Mustafa A. Mustafa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10052)


This paper proposes a decentralised and privacy-preserving local electricity trading market. The market employs a bidding protocol based on secure multiparty computation and allows users to trade their excess electricity among themselves. The bid selection and trading price calculation are performed in a decentralised and privacy-preserving manner. We implemented the market in C++ and tested its performance with realistic data sets. Our simulation results show that the market tasks can be performed for 2500 bids in less than four minutes in the “online” phase, showing its feasibility for a typical electricity trading period.


Secure multiparty computation Local electricity trading market Smart grid Renewable energy source Security and Privacy 



This work was supported by KIC InnoEnergy SE via KIC “SAGA” project, European Commission FP7 project “EKSISTENZ” grant number: 607049, and the European Commission through the ICT programme under contract FP7-ICT-2013-10-SEP-210076296 (PRACTICE).


  1. 1.
    Farhangi, H.: The path of the smart grid. IEEE Power Energ. Mag. 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mustafa, M.A., Cleemput, S., Abidin, A.: A local electricity trading market: security analysis. In: IEEE PES ISGT-Europe, pp. 1–6 (2016)Google Scholar
  3. 3.
    Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  4. 4.
    Lee, W., Xiang, L., Schober, R., Wong, V.W.S.: Direct electricity trading in smart grid: a coalitional game analysis. IEEE J. Sel. Areas Commun. 32(7), 1398–1411 (2014)CrossRefGoogle Scholar
  5. 5.
    Tushar, W., Yuen, C., Smith, D.B., Poor, H.V.: Price discrimination for energy trading in smart grid: a game theoretic approach. IEEE Trans. Smart Grid PP(99), 1–12 (2016)CrossRefGoogle Scholar
  6. 6.
    Abidin, A., Aly, A., Cleemput, S., Mustafa, M.A.: Towards a local electricity trading market based on secure multiparty computation (2016).
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10. ACM (1988)Google Scholar
  8. 8.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC, pp. 11–19. ACM (1988)Google Scholar
  9. 9.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  10. 10.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_16 CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_38 CrossRefGoogle Scholar
  12. 12.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_11 CrossRefGoogle Scholar
  13. 13.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). doi: 10.1007/11681878_15 CrossRefGoogle Scholar
  15. 15.
    Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15497-3_9 CrossRefGoogle Scholar
  16. 16.
    Goodrich, M.T.: Randomized shellsort: a simple data-oblivious sorting algorithm. J. ACM 58(6), 27:1–27:26 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37682-5_15 CrossRefGoogle Scholar
  18. 18.
    Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24861-0_18 CrossRefGoogle Scholar
  19. 19.
    Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and generating random permutations via distributed stochastic processes. In: SODA 1999, pp. 271–280. SIAM (1999)Google Scholar
  20. 20.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure multiparty computation. J. Cryptol. 1–94 (2011)Google Scholar
  22. 22.
    Aly, A.: Network flow problems with secure multiparty computation. Ph.D. thesis, Universté catholique de Louvain, IMMAQ (2015)Google Scholar
  23. 23.
    Shoup, V.: NTL: a library for doing number theory (2001).
  24. 24.
  25. 25.
  26. 26.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: PODC 1998, pp. 101–111. ACM (1998)Google Scholar
  27. 27.
    Cramer, R., Damgård, I.B., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30576-7_19 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Aysajan Abidin
    • 1
  • Abdelrahaman Aly
    • 1
    Email author
  • Sara Cleemput
    • 1
  • Mustafa A. Mustafa
    • 1
  1. 1.KU Leuven, ESAT-COSIC and iMindsLeuven, HeverleeBelgium

Personalised recommendations